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T. Sakurai and T. Sugano

Department of Electronic Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received 7 August 1980; accepted for publication 1 December 1980)

A calculation method to treat the electronic structures of crystalline Si-amorphous SiO,
interfaces with or without microstructural defects is developed based on semiempirical tight-
binding Hamiltonians and the Green’s function formulation, and applied for calculation of the
energy level of the trap states between amorphous SiO, and the Si substrate with (111) orientation.
The major results are (i) the perfect interface does not have any states in the forbidden gap of Si
although the Si-O-Si bonding angle at the interface is varied in the range between 120° and 180°,
and neither does the interface with oxygen dangling bonds have any; (ii) trap states due to a Si
dangling bond appear at about the middle of the Si band gap; and (iii) O-vacancy and Si-Si weak
bonds at the interface produce trap states at the energy range higher than the midgap, whereas Si-
O weak bonds at the interface produce trap states at the energy range lower than the midgap. The
_ energy level of these trap states varies with changing bonding parameters such as bond lengths
and bond angles. These energy levels caused by Si-Si weak bonds and Si-O weak bonds are possible
origins of the interface states continuously distributed in energy. The reduction of trap states in
the Si forbidden gap by bonding H, OH, Cl, and F atoms to Si dangling bonds is also discussed.

PACS numbers: 73.20.Hb, 73.40.Qv, 71.10. + x, 71.25Rk

I. INTRODUCTION

The trap states between the Si-SiO, interface have been
attracting much attention because these states take an im-
portant role in controlling the threshold voltage V', trans-
conductance, and flicker noise of metal-oxide-semiconduc-
tor (MOS) transistors. However, the chemical and physical
origins of these states have not been fully understood, al-
though some attempts were made to shed light on these
problems by Chadi ez al.'™* In particular, little is known
about the theoretical background of the fact that these inter-
face trap states are continuously distributed in energy. Our
work is an extension of the approach of Chadi et al. with a
special emphasis on this continous-distribution of the trap
states at Si-Si0, interfaces.

Our basic model has been constructed with a crystalline
Si with (111) orientation and amorphous SiO, represented by
a Bethe-lattice as shown in Fig. 1. This can be considered as a
Cluster-Bethe-lattice model (CBLM) first introduced by
Joannopoulos and Yndurain,* but in our case the cluster is
the crystalline silicon, whose dangling bonds are terminated
by the SiO, Bethe-lattices. The experimental evidences for a
very thin Si-SiO, transition layer>® and the theoretical con-
clusion that the elastic energy of the Si-SiO, system is low-
ered as the width of the SiO, layer goes toward zero,’ en-
courage us to use this idealized abrupt-junction model to
simulate a thermally grown SiO,-Si interface. Since oxygen
chemisorption of a 1/3 monolayer on a Si free surface is
enough to cancel the surface reconstruction,® it is not needed
to include the reconstruction of crystalline Si surface at the
interface.

A Bethe-lattice used here to represent amorphous SiO,
is a hypothetical, tree-like lattice containing no closed rings,
where the valencies of O and Si are maintained two and four,
respectively. It is constructed by connecting SiO, tetrahe- -
drals and has threefold symmetry. A normal Si-O-Si angle is
chosen to be 144°, which is believe to be the peak value of a Si-
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O-Si angle in an amorphous SiO, system,” and this angle is
varied in the range between 120° and 180°in case of an amor-
phous effect. The electronic structures of crystalline SiO,
and amorphous SiO, are shown to be similar by optical ab-
sorption measurements,'® though the long-range atomic
configurations are quite different. This suggests that the
short-range orders such as valencies and SiO, tetrahedrals
play an important role to determine the electronic struc-
tures, so that the Bethe-lattice model is thought to be a good
approximation to represent amorphous SiO,.

Based on this basic model we have calculated the energy
levels of microscopic defects at Si-SiO, interfaces with
changing various bonding parameters such as bond lengths,
bond bending angles, and bond rotation angles and investi-

_ gated the possible origins of the interface traps continuously

distributed in the forbidden gap of Si. Furthermore, we have

_top view of
Bethe-lattice

Si02
(Bethe-lattice)

crgsfalline
silicon

FIG. 1. Basic model constructed with amorphous SiO, represented by
Bethe-lattice and Si substrate with (111) orientation. Open and closed circles
denote O and Si atoms, respectively.
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FIG. 2. Calculated energy-band structure of bulk silicon using tight-bind-
ing Hamiltonians. Solid line denotes calculated result by the authors,
broken line by Pandey and Phillips (Ref. 11), dot-dashed line by Dresselhaus
and Dresselhaus (Ref. 12), dotted line by Chadi (Ref. 13), X by pseudopoten-
tial method (Ref. 14), and closed circle with error bar denotes experimental
observation (cf. Ref. 11). In the present work Si band gap is calculated to be
1.1eV, which agrees with the experimental result. The top of valence band is
chosen energy zero.

obtained the energy levels of impurities such as H, OH, Cl,
and F bonded to Si dangling bonds at the interface and dis-
cussed the annealing behavior of the interface traps.

Section II of this paper is devoted to the formulation of
Hamiltonians, Sec. III deals with the calculation method
based on Green’s function, Sec. IV shows the models of the
microstructural defects, and Sec. V describes the results and
discussions. f

Il. HAMILTONIAN FORMULATION

A semiempirical formulation of parametrized Hamilto-
nians in which various interaction parameters among va-
lence electrons are determined so as to fit the calculated band
structure to the experimental results and the band structure
calculated by the pseudopotential method was used for SiO,
and Si. The values of the parameters for SiO, were given by

L3

Chadi et al.? For crystalline Si, the agreement of the band
structure calculated by using previously published param-
eters!!!? with the band structure which was experimentally -
known'' and calculated by the pseudopotential method'* are
not necessarily satisfactory, so that the parameters up to sec-
ond nearest-neighbor interactions have been determined to
improve the results with special care to fit the band gap to 1.1
eV because we are interested in this energy range. The band
structures for Si by the previously published parametes and
newly determined parameters are shown in Fig. 2. The val-
ues of parameters are given in Table I in standard notation. 15

In varying the bond length, we assume that each inter-
action parameter is altered according to

VilRu) = Vy(R %) [Sy(R)/Sy(R )] (1)

within the approximation of the extended Hiickel theory.
In Eq. (1) the interaction parameter ¥;(R,), and the overlap
integral S;;(R,,) are those at the bond length R,,, and R i
denotes the bulk bond length.

When impurities (H or Cl or F) are associated, a method
based on the extended Hiickel theory'® has been used. The ij
element of the Hamiltonian is calculated as

H; = — KS;(VOIP,; 4+ VOIP;)/2,
: v (2)
H, =VOIP,,
where S is the overlap integral between the ith and jth orbi-
tals, VOIP, the valence orbital ionization potential of the ith
orbital whose value was given by Basch et al.,'” and K the
proportionality constant. K has been changed in the range
between 1.0 and 2.0 since this range is empirically believed to
be probabile,'*'* but the conclusion described in Sec. V has
not been affected by the choice of X value. In calculating S,
the atomic orbitals were approximated by Slater-type orbi-
tals with Clementi’s orbital exponents.'” The nearest-neigh-
bor interactions among valence orbitals were taken into
account.

1. GREEN’S FUNCTION FORMULATION

Once the Hamiltonian has been established, the next
problem is how to obtain the eigenvalues because the size of
the Hamiltonian is extremely large and therefore straight-
forward solving is impossible. A Green’s function formula-
tion is convenient for this purpose. The Green’s function G is
defined as :

. \E,) {E,|

G(E)=(EI—H) Z E_E (3)
where E denotes energy, I a unit matrix, H a Hamiltonian,
and E, and |E,, ) the nth eigenvalue and eigenvector, respec-
tively. The local density of states of the jth orbital (LDOS; ) is

TABLE L. Interaction parameters (in V). The superscripts 1 and 2 refer to first and second nearest-neighbor interactions, respectively.

E, E, v v, Voo Ve Ve, Ve Vi V.
—10.44 —4.101 —2.144 2.090 2.346 —0.588 0.123 —0.366 0.435 —0.154
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FIG. 3. Schematic illustration that systems A and B interact with each
other.

expressed as -

= — (l/v)i;lim . [G(E+1(S)”], (4)
where I, [G (E + i8); ] isan imaginary part of the jj element
of the matrix G (E + id).

Here it must be notified that the matrix size to be ma-
nipulated is greatly reduced if the interactions among atoms
are short ranged. When systems A and B interact with each
other through short-range interaction as shown in Fig. 3, the
Hamiltonian and Green’s function G, respectively, are writ-
ten in the form

(EI — H)™!
h2,  h2, 0 o\]"'
N hi kY Vi 0 5)
’ 0 Vi, hky kB ’
0 0 K hZ
Gy G Gi, G%
G}& Gll Gll G12
G(E): AA AB AB (6)

GL G Gl Gh
6% Gi 63 6%
On the other hand, when the systems A and B are inde-

pendent, as illustrated in Fig. 4, the Green’s function for
each system g, , and g, are written as

I P ) I
i o h o &)’
and ,
hie hE\|"' (85 &
8 = [EI— (h12 pu =\ .12 11)’ (8)
BB BB BB 8BB

respectively.

‘ no
interaction

SYSTEM A SYSTEM B

FIG. 4. Schematic illustration that systems A and B are independent.
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separa’re ’
connecf
FIG. 5. Schematic illustration of connecting and separating two systems.

'Then the following equations are obtained (Appendix

A).

Gl = [(8)" — Vs ghs V}?]A I~ K 9)
(equations for connection),

g =G "+ Vi gumVi ] (10)

(equation for separation).

These two equations show that the size of the matrix is
small if the local density of states within a small part of the
system is to be calculated. Moreover, connection and separa-
tion of atomic groups as illustrated in Fig. 5 can be done
quite easily using these two equations. For example, if sys-
tem A is the crystalline Si and system B is the amorphous
SiO,, then using Eq. (9), the Green’s functions near the inter- -
face are calculated, and if G, is a Green’s function of the
cyrstalline Si at the perfect interface and g, is a Green’s
function of a Bethe-lattice and an extra oxygen atom, then
using Eq. (10), the Green’s function of the interface including
a dangling bond ( g,,) can be obtained.

Here, the application of this method to the Si (111) sur-
face is described. Let k be a two-dimensional reciprocal vec-
tor of the Si (111) surface. Then, taking Bloch orbitals as a
basis set, the Hamiltonian H * and the Green’s function G *
for a certerin k vector are expressed in the form
GYE)=(EI — H¥™!

h l1(1 Vll(s
Ve hi 0
4
=| EI— V!‘; h l1‘1 Vll(s
0 Vi(l h ‘l(l .
( G
- : 1

\

where &%, V¥, V¥, and G¥%, are 8 X 8 matrices.

Taking into account the fact that the semi-infinite solid
should not be influenced by the addition of one atomic layer
on the surface [hereafter we will call this technique the layer
stacking method (see Fig. 6}], the self-consistent equation for
Gh,

Gll(l = [(E+i6)1—h11(1 Vll(s Gll(l th]_]’ (12)

holds, which is derived by the use of Eq. (9). G%, can be
determined by this equation. To solve Eq. (12) in terms of
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FIG. 6. Layer stacking method. When the system is semi-infinite, it should
not be influenced by the addition of the extra one atomic layer.

G, numerically, the relaxation method is effective. Since
this relaxation process is rather oscillatory, the damping
type procedure must be efficient to accelerate the conver-
gence. In fact averaging operation over each oscillation peri-
od has shortened the computation time by a factor of 2-10.
Once the G%,’s for various k vectors are obtained, the
Green’s function G,, which takes normal atomic orbitals as a
basis set is calculated by

G, =3 G . | (13)

The Green’s function for the SiO, is also calculated by
use of an equation of self-consistency. Since the SiO, Bethe-

lattice employed here has been constructed by infinitely con- \

necting SiO, units, one SiO; unit whose three oxygen dan-
gling bonds are terminated by the SiO, Bethe-lattices is equal
to the SiO, Bethe-lattice itself. This fact leads to the equation
of self-consistency similar to Eq. (12). The Green’s function
of SiO, Bethe-lattice is determined through this equation,
where the manipulation of matrices sized 16X 16 are re-
quired. The solution of the SiO, Bethe-lattice is first ob-
tained by Laughlin and Joannopoulos®® using a transfer ma-
trix technique. In the present method, however, the Green’s
functions are computed directly without transfer matrices.
When the i6 in Eq. (4) is approximated by a finite value,
owing to the practical limitation, the § function in Eq. (4) has

Jp

FIG. 7. Lorentzian curve. If
Y1 E.,y\, E; and p,areknown, E
l . and y, can be calculated.

Y2

£, Ep E,
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the Lorentzian broadness. That is, a sharp line spectrum at

E, is broadened by a factor of /[(E — E, )’ + 6°] . Howev-
er, if the values y, and y, at two points E, and E, near the

peak are given, then the peak value y, and the peak energy

E, can be calculated by the following formulas,

E, = {nE —»E)

+ [ ywolEy — E,)* — 8y, — yaf] 23 /(2 — )
Y, =01+ (E, —E,}/8]. (14)
The explanation of p,, ¥,,,, E,, E,, and E, is given in Fig.7.
Therefore, though § = 0.04 eV and energy step of 0.1 eV are
adopted here, the error of calculated by this approximation
is less than 0.01 eV with help of Eq. (14).

IV. MODELS AND CALCULATION PROCEDURE

Models of the atomic configurations used in the calcu-
lation are shown schematically in Fig. 8(a)-18(f). The follow-
ing is the procedure of the calculation. (1) Fix one certain k
vector. (2) Calculate the Green’s function for Si (111) free
surface [Fig. 8(a)]. (3) Connect a Bethe-lattice and one oxy-
gen to this surface [Fig. 8(b)]. (4) Sum up the Green’s furnc-
tions over various k vectors. (5) Separate the Bethe-lattice
and one oxygen to form a Si,=Si- dangling bond [Fig. 8(c)}.
(6) Bring the Bethe-lattice closer to the Si dangling bond to
simulate Si-Si bonding and O-vacancy [Fig. 8(d)]. (7) Bring
the Bethe-lattice and one oxygen closer to the Si dangling
bond to form Si-O weak bond at the interface [Fig. 8(e)]. (8)
Bond any of H, O, OH, C}, or F to the Si dangling bond to
represent the bonding of impurity atom [Fig. 8(f)]-

These are the rough sketches of the calculation proce-
dure and other atomic con'ﬁgufations used in the calculation
will be shown schematically in each time in the results. The

normal bond lengths between O and H, Siand O, Siand H, Si -

and Cl, and Si and F are chosen to be 0.97, 1.61, 1.50, 1.50,
and 1.50 A, respectively.

| "i“i“i*"’

(3) (b) Si

(c)

+—e
—~
8
N

s Vi W g

FIG. 8. Models of various configurations used in the calculation. (a) Si free
surface, (b) perfect interface; (c) Si;=Si- dangling bond, (d) Si-Si weak bond
and O-vacancy at interface, (e} Si-O weak bond at interface, (f) impurity at
interface. Closed circle, open circle, and closed triangle denote Si, O, and
impurity atoms (H, OH, Cl, and F), respectively.
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FIG. 9. Perfect interface and oxygen dangling bond at the Si-8iO, interface
have no energy level in the range between 0.5 eV below the top of the valence
band and 0.5 eV above the bottom of the conduction band of Si. Open and
closed circles denote O and Si atoms, respectively.

V. RESULTS AND DISCUSSIONS

Both the perfect interface with the Si-O-Si bond angle
ranged from 120° to 180° and the interface with oxygen dan-
gling bond do not have a gap state as illustrated in Fig. 9.
However, Si,=Si- dangling bond at the interface gives rise to
a gap state at about the middle of the Si band gap as shown in
Fig. 10, as Laughlin ef a.> have indicated. But it should be
noted that the Si band gap in their calculation was about 2.5
eV owing to the nearest-neighbor approximation and a
Bethe-lattice approximation for the Si substrate, whereas in
our model the Si band gap is calculated to be exactly 1.1 eV.

\ The O-vacancy and Si-Si weak bond at the interface

_195 —
ANTI BONDING
—25| oyl
3 R4
v L 1
> T
_ Cc.B :
g -40k — '
w
g
DANGLING
a5l  BOND
BONDING -
-so}
ve. [/
' S —
i 3. )
20} ot diA) .
Si-Si BOND 0-VACANCY

FIG. 10. Si dangling bond, Si-Si bond, and O-vacancy level at the interface.
These energy levels move in the lower half of the Si band gap with changing
the bond length d. Open and closed circles denote O and Si atoms, -
respectively. . :
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FIG. 11. O-vacancy level and its dependence on the bond bending angle.
Open and closed circles denote O and Si atoms, respectively.

produce trap states in the Si band gap, whose energy levels
vary in the energy range lower than the midgap of Si by
changing various bonding parameters. Figure 10 demon-
strates the dependence of the Si-Si weak bond level (includ-
ing the O-vacancy level) on the Si-Si bond length. Figures 11
and 12 show how the O-vacancy level varies in energy de-
pending on the bond bending angle, and the rotation angle,
respectively. In these bonding parameters, bond length vari-
ation gives the strongest effect on the energy level.

When the Si dangling bond interacts weakly with the Si
atom which is already bonded to four oxygen atoms in the
SiO, network, the level also appears in the Si band gap. This
level moves in the lower half of the Si band gap when the
distance between these two Si atoms are varied from 2.3 Ato
infinity as is shown in Fig. 13.

On the contrary, Si-O weak bonds and Si-O weak inter-
action produce trap levels in the upper haif of the Si band

A
-40} CB 5
3
‘; -45-
% 6 =180° \
= 8 =120°
w =
-50
v.B
! I
0 30 60
(eclipse) (trans)

ROTATION Pldeg)
FIG. 12. Dependence of O-vacancy level on the bond, rotation angle. This

dependence is very weak. Open and closed circles denote O and Si atoms,
respectively.
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FIG. 13. Energy level of Si dangling bond weakly interacting with Si atom
which is already bonded to four oxygen atoms in SiO, network. The energy
level varies with changing the distance d. @ rotation gives no significant
effect on the energy level. Open and closed circles denote O and Si atoms,
respectively.

gap. The Si-O weak bond state changes its energy level de-
pending on the bond length and the bond bending angle as
demonstrated in Figs. 14 and 15, respectively. Si-O weak
interaction indicates situation where the Si dangling bond
interacts weakly with the O atom which is already bonded to
two Si atoms in the SiO, network. Figure 16 shows the de-
pendence of the Si-O weak interaction level on the distance
between the Si atom and the O atom.?' The various energy
levels mentioned above are summarized in Fig. 17.

The bonding parameters at the actual Si-SiO, interface
can be supposed to vary because of the amorphous structure
and the large internal stress included in this system. There-

41

-4L C.B !
l; Y
Q,
5
o
Ly —
4
i
-5l
V.B.
] £ o
3y .
3
d [A]

N

FIG. 14. Energy level of Si-O weak bond at the interface. This energy level
moves in the energy range higher than the midgap with changing the bond
length d. Open and closed circles denote O and Si atoms, respectively.
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FIG. 15. The dependence of the energy level of Si-O weak bond on bond
bending angle. The dependence is minor. Open and closed circles denote O
and Si atoms, respectively.

fore Si-Si weak bond, Si-Si weak interaction, Si-O weak
bond, and Si-O weak interaction are thought to be the possi-
ble origins of the interface trap states continuously distribut-
ed in energy. Commonly observed U-shaped distribution of
the interface trap densities (Fig. 18) is explained, if bond
length distributipns in Fig. 19 and energy level dependences
on the bond length as Fig. 10 and Fig. 14 are assumed. The
rapid decrease of the distribution (Fig. 19) as the bond length
increases is reasonable because the normal bond lengths are
shorter than 2.5 A and the longer bond lengths are less likely.
The gap states move out of the energy range between 0.5
eV below the top of Si valence band and 0.5 eV above the
bottom of Si conduction band when any of H, OH, Cl, or F is
bonded to the Si atom at the interface. This situation is illus-

_aolcB \ 5

>
S
-45
&
[2 —
w
=z
[¥5)
-50|
V.B. »
| | o0
)
2.0 25 30

d [A]

FIG. 16. Energy level of Si dangling bond weakly interacting with oxygen
atom which is already bonded to two Si atoms in SiO, network. The energy
level varies with changing the distance d. ¢ rotation gives no significant
effect on the energy level. Open and closed “cirlces” denote O and Si atoms,
respectively.
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1Y (1a) PeRFECT {(1b) OXYGEN DANGLING
INTERFACE BOND

e

(2) Si DANGLING BOND
3 (3a) Si-Si WEAK  (3¢) Si-0 WEAK
BOND BOND

SEQ
{3d) Si-0 WEAK %

INTERACT ION777777777
V.B.

HH o

(3b) Si-Si WEAK

INTERACTION%
N 4 | —>

PE CONFIGURATION P % CONFIGURATION

COORDINATE COORDINATE

FIG. 17. Summary of various energy levels at the Si-SiO, interface. (1)
Perfect interface (1a) and the interface containing oxygen dangling bond (1b)
have no energy level in the Si band gap. (2) Si,=Si- dangling bond has an
energy level at about the midgap of Si. (3) Si-Si weak bond (3a) Si-Si weak
mteractlon {3b), Si-O weak bond (3c), and Si-O weak interaction (3d), give
rise to gap states whose energy levels vary within the forbidden gap of Si
with the change of the configurations. Open and closed circles denote O and
Si atoms, respectively.

trated in Fig. 20. Since an energy level outside the Si band
gap can not work as a trap state at the interface under normal
operating conditions, this result explains the reduction of the
interface trap density by H, annealing, trichrolo-ethylene
annealing, and HCl oxidation, and further suggests the pos-
sibility of F annealing.

VI. CONCLUSIONS

A calculation procedure dealing with the electronic
structures of crystalline Si-amorphous SiO, interface includ-
ing microstructural defects is presented based on semiempir-
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Z
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O
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= Y v

INE | v
0.0 0 -0.1 0.0
SURFACE POTENTIAL[eV]

FIG. 18. Commonly observed U-shaped distribution of interface trap-staté
density in the forbidden gap of Si. (cited from Ref. 22).
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FIG. 19. Assumed bond length density N(d ) (A ~' cm™2) vs bond length d
(A). Using this distribution together with the energy level dependence on
bond length of Fig. 10 and Fig. 14, U-shaped distribution as shown in Fig.
18 can be explained.

ical tight-binding Hamiltonians and Green’s function for-
mulation and applied to the calculation of interface trap
states between amorphous SiO, and the Si substrate with
(111) orientation.

The following results are obtained. The perfect inter-
face and the interface including oxygen dangling bonds have
no energy level in the Si band gap, whereas the Si;=Si- dan-
gling bond has an energy level at about the middle of the Si
band gap. Si-Si weak bond and weak interaction at the inter-
face give rise to gap states whose energy move in the energy
range lower than the midgap with varying the distances be-
tween two Si atoms, while the energy levels of Si-O weak

X =3any of H,O0H,
CL,and F

0.5 ev

Si bandgap

0.5 eV

FIG. 20. Impurity at the Si-SiO, interface. If any of H, OH, Cl, and F is
bonded to the Si dangling bond, no energy level exists in the energy range
between 0.5 eV below the top of the valence band and 0.5 eV above the
bottom of the conduction band of Si. Open and closed circles denote O and
Si atoms, respectively.
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bond and weak interaction at the interface appear at the up-

per half of the forbidden gap of Si depending on the distances

between the Si atom and the O atom.

‘Possible origins of interface trap states which are dis-
tributed continuously in the Si energy gap are suggested to be
these Si-Si weak bonds, Si-Si weak interactions, Si-O weak
bonds, and Si-O weak interactions, at the interface.

The reduction of the gap state density by H, annealing,

" trichrolo-ethylene annealing, or HCl oxidation is under-

stood by bonding H or Cl to the Si,=Si- dangling bond at the
interface.
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APPENDIX A

Calculation of (EI — H )G = I using
(GAA GAB) _ ( 8ix' - VAB) (Al)
Gps Gup — Vi 855"
leads to
(G o Gi’,a)
G Gl
g,qu + &V gq 8 + &3 V,lqlzz BA) (A2)
AA + gAA V gAA + 84 V,lqlaG
and

(1’& G}?L)_CZBBV}QIAG:& 853V 54 G 1y ) (A3-)
G G3y 22V buG e 85V iaGlia)

Particularly, the following equations are useful:
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GlA = gAA +gAA GBA ’ (Ad)
GBA = gppV 5.G 1y - (AS5)

Substituting Eq. (A5) into Eq. (A4) and solving for G 1, we
have Eq. {9). Other than Eq (9) and Eq. (10),

gAA Vl G VBA g,:q +,g'l‘; . (A6)
also holds.
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