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Approximation of Wiring Delay in MOSFET LSI

TAKAYASU SAKURAI, MEMBER, IEEE

Abstract—Two approximation methods for wiring delay in MOS LSI
are studied. One is analytical and the other is a lumped circuit approxi-
mation. The basic model for wiring is a distributed CR line with a drive
MOSFET at one end and a capacitive load at the other end. Simple ap-
proximated formulas for the delay and the step response of this model
are obtained.

Approximation of a distributed CR line by lumped R’s and C’s com-
bination, which is very useful when incorporated in circuit simulation
programs, is also investigated. The widely used L ladder circuit model
is found to be a poor approximation, while # and T ladder circuit
models give satisfactory results. The simplest circuits that approximate
the interconnection line within a given tolerant error are tabulated
under various drive and load conditions.

LIST OF SYMBOLS

Capacitance of wiring per unit length
Resistance of wiring per unit length

Length of wiring

Total capacitance of wiring (=c - L)

Total resistance of wiring (=r - L).

¢t Load capacitance, including MOS transistor
gate capacitance to be driven

XSy o
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r: Equivalent resistance of drive MOS transistor
CT = Ct/C

Ry =r/R

X The coordinate from driven point to load
t Time

t' Notmalized time (= t/CR)

s Laplace transformed variable for ¢

s’ Laplace transformed variable for ¢’

o =-5'

v Voltage

14 Laplace transformed voltage

i Current

1 Laplace transformed current

Ve Supply voltage

REMP Relative error of minimum pole
subindex D Distributed CT line

subindex L L ladder circuit

subindex # « ladder circuit

subindex T T ladder circuit, except for Cp and R .

I. INTRODUCTION

N MOSFET LSI, a wiring delay becomes an important fac-
tor in determining total delay of a system. Particularly,
the delay induced by word lines, bit lines, clock lines, and bus
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Fig. 1. Various lumped circuits used to approximate a wiring. N: no
additional circuits; C: only one capacitor; R: only one resistor; CPL1:
C preceding L circuit; L1: one-step L circuit; P1: one-step = circuit;
T1: one-step T circuit; P2: two-step n ladder circuit; T2: two-step T
ladder circuit; P3: three-step n ladder circuit.

lines in memory or logic LSI are essential to operation speed
of a chip. These interconnection lines are considered as dis-
tributed CR lines. In order to evaluate the CR line delay, the
first step is to estimate the capacitance and the resistance of
the line [1]-[3] and the second step is to calculate the re-
sponse of the line. The distributed CR lines are to be described
by partial differential equations, and extensive studies have
been made to solve the differential equations. A good review
of this field is given by Kumar [4].

At the initial stage of designing MOS LSI’s however, it is
convenient to have some simple formulas which express the
approximated behavior of the distributed CR line. One of the
objects of this paper is to give simple formulas for the delay
and the step response of the interconnection liries under vari-
ous external circuit conditions. Some analytical work has been
done by Penfield er al. [5] to give the upper and lower bounds
of the CR line delay. In this paper, much stress is put on sim-
plifying the formulas for a step response and a delay time of
distributed CR lines without too much degradation of the ac-
curacy. The resultant formulas are suitable for roughly esti-
mating a partial delay of a system, such as a word line delay.

At the middle and final stage of an MOS LSI design, in order
to evaluate a total system performance, interconnection lines
are usually substituted by equivalent lumped circuits (see Fig.
1 for various equivalent lumped circuits). Then, they are simu-
lated by CAD circuit programs such as SPICE, ASTAP, and
SCEPTRE. This method is widely used, but the accuracy of
this approximation was not clear. The second object of this
paper is an assessment of the method. A comparison between
the transfer function of a distributed CR line and that of the
lumped circuit models is made to shed light on this accuracy
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problem. As a result, the usually adopted L ladder circuit
model is found to be a poor approximation. The relative error
of the delay amounts to as much as 30 percent, even when
three ladder steps are concatenated. On the other hand, 7 or
T ladder circuit models can simulate the distributed CR line
very well. In this case, the relative error of the delay is less
than 3 percent even in the worst case if three ladder steps are
connected. When a tolerant error and an external circuit con-
dition are given, there is a simplest lumped circuit that ap-
proximates the wiring delay within the tolerance. This circuit
is useful in reducing computational cost, so it is tabulated in
Section IV-B.

Two examples of the application of the above-mentioned
approximation are presented in Section V. One is for a word
line in an n-channel LSI memory of the next generation, and
the other is for CMOS design. Conclusions are summarized in
Section VI

II. BAasic MODEL FOR WIRING

The basic model considered in this paper is a distributed CR
line whose one end (point 1) is driven by MOSFET’s and the
other end (point 2) is connected to the gates of MOSFET’s as
shown in Fig. 2(a). Most of the wiring in an MOS LSI can be
reduced to this form. Then, the drive transistor is replaced by
an equivalent resistance r, and the load transistor by a capaci-
tance ¢, as is shown in Fig. 2(b), in order to make the problem
tractable. This replacement by 7, is not exact, but it is the
simplest way of taking the drive conditions into account. The
value of r, is between 1/(maximum drain conductance) and 1/
(minimum drain conductance). However, the good choice of
¥, turns out to be the former in this paper. Detailed discus-
sions on r, are given in Sections [V and V. r,/R << 1 corre-
sponds to a constant voltage drive and r,/R >>> 1 to a constant
current drive.

Charging-up of the line is explained in Fig. 2(b). The same
discussion can be used for the discharging case, due to a lin-
earity of this equivalent circuit. Conclusions about delay time
and the accuracy of lumped models are essentially unchanged.
Although discussions are mainly concentrated on the voltage
response of the endpoint of the line (point 2 in Fig. 2), some
calculations are carried out on the current and voltage wave-
form of an arbitrary position of the line for ¢, =r, =0 in
Appendix A. This endpoint is important because it shows the
slowest response and decides the system speed. The transfer
function Tp(s") from point 0 to point 2 is written as

1
(1 +s'CpR ) cosN/-s" - Ry +Cp)V/-s' sin/-s'"
(1)

Detailed derivation of this equation is given in Appendix B.
As is seen from (1), it is not the absolute values of C, R, ¢y,
and r,, but the ratios ¢,/C and r,/R that determine a voltage
response of the line. It is interesting to note that Cy and Ry
are symmetrical in (1), and this indicates that the drive and
load conditions are of equal importance.

TD(S')=



420
drive
MOSFET
Vee capacitive
load

gt

Q | 2

R

Fig. 2. (a) Basic model for wiring in MOS LSI. (b) Equivalent circuit
of the basic model. The drive MOSFET is replaced by an equivalent
resistance 7; and the load MOSFET by a capacitance.
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III. ANALYTICAL APPROXIMATION
A. One Exponential Function Approximation

When a step voltage is applied at the gate of a drive transistor,
the response of point 2, ¥, (s"), is written as
! vcc !
Va(s) = e Tp(s').

p ()
Denoting the absolute values of the poles of (2),0,0,,0,, ",
Oy, * *, in an increasing order, the response in time domain
v,(¢t") can be expanded in multiexponential form as follows,

by using Heaviside’s expansion theorem:
v,y (¢’ —opt’
2( )= 1+ Okt

Vee

i Cke (3)
k=1

where

Ce =(-D*

2V(1 +R3d®)(1 + C26%)
Vor {(1+R}aP(1 + c%o;:() +(Rr+Cr)(1+RpCrop)}

)
Sigmas are the solutions of the following equation:
1- RTCTak
tanv/ oy =—————F—. s)
T Rr+Cp) Vo
It is shown by inspection of (5) that
k-)m<or, <(k-3)m ()

However, (5) can be solved exactly only when Cy =Ry =0 as
is given in Appendix A. In other cases, the solution must be
numerical.

In the multiexponential expansion of the step response, (3),
the third term is found to be less than 102 at the time when
v,(z") is equal to 0.9v,, even if Cr and Ry vary from zero to
infinity. This means that the terms higher than the third can
be neglected if a global waveform is of interest. That is, the
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Fig. 3. One exponential function approximation for a step response
of an interconnection line. Exact waveform is also shown as a refer-
ence. (a) Rp=Cr=0. ®)R7=0,Cr=1o0r Rp=1,Cyr=0. Ap-
proximation is excellent at v = 0.9 v,..
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Fig. 4. (a) Minimum pole (g,) of transfer function of distributed CR
line for various C7 and Rp. (b) First coefficient (C;) in multiex-
ponential expansion of step response of a distributed CR line.

following equation is an excellent approximation:

va(t")

Uee

=1+C; - € 1" Q)
Fig. 3 shows a comparison between the exact voltage response
and the approximated response by (7). Numerically calculated
o; and C; are plotted in Fig. 4, respectively, for various Cr
and R T
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Fig. 5. Delay (tg.9) of a distributed CR line. (a) In log scale. (b) In
linear scale. When x-axis is chosen for Ry, parameter is Cy. When
x-axis is chosen for C, parameter is R 7.

B. Delay Time

We define ¢4 as a time delay to a step voltage at the drive
point O to the time when the node 2 in Fig. 2(b) reaches
0.9v,.. Since the accuracy of (7) is excellent, normalized de-
lay t4.9(=t99/CR) is calculated as follows:

;1
t0.9 =;1n[10C1|. 8)

Fig. 5 shows calculated results of #59. When Ry and Cr are
large, the delay time is proportional to Ry or Cyp, as seen from
Fig. 5(a). In this region, the delay is limited by the drive capa-
bility of a MOSFET or the capacitance of the Joad. On the
other hand, when both of Ry and Cy are small, the delay is
almost constant, limited by the line itself.

Fig. 5(b) shows a nearly linear dependence of ¢y, on both
Cr and Ry, so that it is suspected that £y can be approxi-
mated by a + bCr + bRt + cCpR where a, b, and ¢ are con-
stants. In fact, setting these constants so as to minimize the
relative error in the range Cz, Ry <1, the delay is found to
be expressed in a very simple form as

to_Q/CR = 1'02+2'21(CTRT+CT +RT)' (9)
The relative error of this formula is within 1.1 percent when
both C and Ry are less than unity, and is less than 4 percent
for any Cr and Rr.

IV. LumpED CircuiT MODEL

The previous section deals with an analytical approximation
which is useful in the initial stage of LSI design, but is not
compatible with circuit simulators, Lumped models which
are suited for CAD programs are treated in this section.
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Fig. 6. Step responses of L, m, and T ladder circuits and distributed CR
line for Cp= Rp=0. (a) Number of ladder steps = 1. Current is also
shown. (b) Number of ladder steps = 3. = and T ladder circuits ap-
proximate a distributed CR line much better than the L ladder circuit
does. Although only waveforms for charging-up case are shown, those
for discharge are easily seen if the chart is put upside down because
of the linearity of the circuits.

A. L and T Ladder Models

Some of the examples of n, T, and L ladder circuit models
are shown in Fig. 1. The names are derived from the shape of
their unit blocks. These circuits are chosen here because pa-
rameters of the circuit elements are easily obtained and the
circuits coincide with a distributed CR line when the number
of ladder steps goes to infinity. Rajput proposed a nonuni-
form ladder circuit to approximate a distributed CR line [6].
The use of the circuit must be restricted because it does not
reproduce the correct response when the line is driven bidirec-
tionally. Moreover, it is difficult to improve the approximation
easily.

Initially, discussions are confined to the case of ¢, =r, = 0.
Transfer functions of L, w, and T ladders are obtained in
Appendix B as

1
TL(S,)= 7
cos (nf)—i%\/—s' sin (ng)/ﬁ an—z (10)
Tn(s')=TT(S')=m (11)
where
/s’ s’ s’
tan § = —’;5(11'4’1—2)/(11'5;2—) (12)

Step responses of these circuits for n =1 and 3 are shown in
Fig. 6 with responses of a distributed CR line as a reference.
These responses can be calculated through Heaviside’s expan-
sion theorem, similarly to (3), if 0)’s and C)’s are obtained.
oy’s are expressed as
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REMP is almost equal to relative error of a delay as seen from Figs. 6,
8, and this figure. Accuracy of the model increases as the number of
ladder steps n increases, but it saturates at about 3 or 4.
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As for the L ladder circuits, Newton’s method is applied to
search the poles of (10). Cy is calculated numerically by the
following formula:

TG'")

'

(13)

(8" +op t.e) (14)

Ck = lim
€0
where T(s') is one of Ty (s'), T(s"), and T (s").

Now, an index of the error of the lumped circuit models
should be settled to discuss the approximation error quantita-
tively, A relative error of a minimum pole (REMP) is chosen
for this index in this paper. Concretely,

(0, of a lumped circuit)

REMP = — e
(o4 of a distributed CR line)

(15)

In the present instances, o is quite separated from o,, so that
it is considered as a time constant of the ladder circuit. Since
the delay is proportional to the inverse of a time constant, the
REMP is almost equal to the relative error of the delay (¢4.5)
and this situation is assured in Figs. 6-8. Because the REMP
is relatively easy to calculate, it is suitable for estimating an
accuracy of a model when voltage time response is of interest.
The dependency of the REMP on # is shown in Fig. 7(a). As
seen from Figs. 6 and 7(a), the widely used L ladder model is a
poor approximation. The REMP amounts to as much as 30
percent, even when three ladder steps are connected. On the
other hand, 7 and T ladder models are satisfactory. It should
be noted that the accuracy of the models is improved as # in-
creases, but it saturates at about three or four ladder steps.
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Fig. 8. Step responses of L, m, and T ladder circuits and a distributed
CR line for finite Cy or Ry, namely C7 (R7) =0, Rp (Cp) = 1. (a)
Number of ladder steps = 1. (b) Number of ladder steps = 3. mand 7
ladder circuits approximate a distributed CR line much better than
the L ladder circuijt does.

TABLE 1
REMP or THree-Step m Lapper Mober (P3)
Sp U O.U?T u.l 1 2
U 2.3 2.1 1.2 -.3 -.3
J.01 2.3 2.1 1.2 =-.3 =~-.3
0.1 2.2 2.1 1.3 =-.2 -.2
1 1.2 1.1 .9 .1 .0
2 .7 .7 .0 .1 .U

I: Errors are in percent. 2: Negative (positive) value corresponds to
under- (over-) estimation of the delay.

When C7 or Ry has a finite value, the response becomes
slower and the approximation becomes better, as shown in
Figs. 7(b) and 8 and Tables I and II. These results are calcu-
lated using (B8)-(B13) in Appendix B. This improvement is
naturally understood because the load capacitance and the re-
sistance at the input can be replaced by exact models and the
effects of these external circuit elements become eminent as
Cr and Ry increase.

For finite Cz and Ry, too, the L ladder model is much
worse than 7 and T models. Although 7 and T models have
one more circuit element than the L ladder, the improvement
obtained by this addjtion is worth the cost.

The REMP of C preceding L circuit (see CPL1 in Fig. 1)
is also calculated. The result is that this CPL1 is much worse
than the normal L circuit (L1) and should not be used in any
case.

B. Recommended Circuit

It is pointed out in the previous section that the REMP of
either the three-step 7 or T ladder circuit is less than 3 percent,
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TABLE 11
REMP oF THREe-STEP T LADDER MODEL (T3)
R,
o U V.01 ou.l 1 2
0 2.3 2.3 2.2 1.2 7
0.01 2.1 2.1 2.1 1.1 7
u.l 1.2 1.2 1.3 9 [
1 -.3 -3 -2 1 1
2 -.3 -.3 -2 N )

I: Errors are in percent. 2: Negative (positive) value corresponds to
under- (over-) estimation of the delay.

TABLE 111
RECOMMENDED LUMPED CIRCUIT TO SIMULATE DISTRIBUTED CR
LINE WHEN 10 PERCENT ERROR IS ADMITTED

R,
Cy 0.0 .1 .2 .5 1% 2 5 16 2u 50 lou
J P2 P2 P2 P1 Pl Pl Pl o] C C C C
.01 P2 P2 P2 PL PL PL PL € € ¢ ¢ ¢
.1 Pz P2 P2 Pl PL Pl Pl C C C ¢ ¢
.2 Tl T1 T1 Pl Pl Pl Pl C C C C C
.5 Tl TL TL Pl PL PL PL C G C ¢ C
1 el Pl PL PL PL PL PL LL C € ¢C ¢
2 Pl Pl Pl Pl Pl Pl Ll L1 C C C C
5 R R R R R L1 L1 L1 C C [& C
10 R R R R R R R R C C C C
20 R R R R R R R R C C N N
50 R R R R R R R R C N N N
100 R R R R R R R R C N N N

Circuit types are abbreviated according to Fig. 1.

TABLE IV
RECOMMENDED LUMPED CIRCUIT TO SIMULATE DISTRIBUTED CR
LINE WHEN 3 PERCENT ERROR IS ADMITTED

CT 0 .01 .1 .2 .5 1 2 S 10 20 50 100
[\ P3 P3 P2 P2 Pl Pl Pl Pl Pl C C C
.01 P3 P3 P2 P2 PIL Pl PlL PL Pl C C C
.1 T2 T2 P2 P2 Pl Pl Pl Pl Pl o} C C
.2 T T2 P2 P2 Pl Pl Pl Pl Pl C c C
5 TL T1 Tl TIL Pl Pl PlL Pl Pl C C c

1 TiL Tl Tl T1I Pl P1 PL PL Pl C C C

2 T T1 T1L Tl Pl P1L PL Pl L1 L1 C C

5 Pl pP1 Pl Pl Pl Pl Pl L1 L1 L1 C C
19 Pl Pl Pl Pl PL Pl LI LI L] L1 C C
20 R R R R R R L1 L1 L1 L1 C C
59 R R R R R R R R R R C N
100 R R R R R R R R R R N N

Circuit types are abbreviated according to Fig. 1.

but it is not practical to employ this circuit for all of the wir-
ing in an LSI design. In order to reduce computation cost, the
simplest lumped circuit that approximates the wiring within a
tolerant error is recommended. Since the simplest circuit de-
pends on Cr and Ry, they are tabulated in Tables III and IV
for the tolerant error of 10 percent and 3 percent, respec-
tively. The value of the equivalent resistance r, is between
1/(maximum drain conductance) and 1/(minimum drain con-
ductance). Since the approximation gets better as r,/R in-
creases, the safer choice is (1/maximum drain conductance).
In these tables, a # ladder circuit is chosen when both 7 and
T ladders are candidates. This is because the computational
time of the circuit simulator programs strongly depends on
the number of nodes included in the circuit and the 7 ladder
always has one more node than the 7 ladder. It is to be em-
phasized that these recommended circuits are not confined
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Fig. 9. Step response of a word line in n-channel dynamic memories to-
gether with dc characteristics of drive MOSFET. Approximation by
P2 is excellent, while L2 cannot reproduce the correct response. The
line denoted by one exp. approx. is calculated by simple formula (7).
Dash-dot line in the figure represents dc characteristics of r+ whose
value is chosen to fit 7 4 to the correct response.

only to the step voltage input case because the REMP does not
depend on the input waveform.

As seen from Table IV, a wiring can be replaced by only one
capacitance if r,/R is greater than 50. This condition is met
in ordinary aluminum wires for MOS LSI, and thus the validity
of widely used one capacitance approximation is appropriate.

V. APPLICATIONS TO WORD LINE DELAY ANALYSIS

Figs. 9 and 10 are two examples of the word line delay anal-
ysis. Simulation is carried out by SPICE, assuming LSI mem-
ory design of next generation. Fig.9 is for a word line in an n-
channel memory where the gate of the word line drive MOSFET
is bootstrapped as in a dynamic LSI memory design. Fig. 10 is
for CMOS memory where word lines are driven by a p-channel
MOSFET. Ip, versus Vpg plots of the drive MOSFET’s are also
shown in these figures. The transistor model is MOS3 of SPICE
and includes the short channel effect, the back-gate bias effect,
and mobility saturation, whose parameters are fitted to real
devices.

Dash-dot lines in the figures show the characteristics of the
equivalent resistance r,, the value of which is chosen to fit the
calculated word line delay 9 by (9) with the simulation. For
an n-channel drive MOSFET the drain current I, depends on
Vps nearly linearly, so that it is easy to obtain the value of 7,.

For a p-channel drive MOSFET, r, is near the value of 1/
(maximum drain conductance). This is because the drive
MOSFET is operated in a triode region most of the time,
as seen from the voltage response of point 1 in Fig. 10. r,
should be chosen as 1/(average drain conductance of triode
region). However, it is difficult to calculate this value exactly.
An easier choice is 1/(maximum drain conductance), which is
not bad according to the reasoning below. For the usual poly-
silicon word lines where the CR time constant of the word line
limits the response speed the contribution of the term 2.21r,C
to fg.9 is about 10-20 percent. In this case, 30 percent estima-
tion error of r, corresponds to 3-6 percent error of the total
delay induced by the word line.

Broken lines in Figs. 9 and 10 show the calculated waveform
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Fig. 10. Step response of a word line in CMOS memories together with
dc characteristics of drive MOSFET. Discharging of a word line by an
n-channel MOSFET is similar to this figure if the figure is read upside
down.

by using the simple formula (7). They fit the simulated curves
well.

Although only charging-up of word lines is discussed here,
discharging of the line by an n-channel MOSFET is similar to
the case of Fig. 10.

VI. SuMMARY

An analytical approximation and a lumped circuit approxi-
mation for wiring delays in MOS LSI are studied. As a result,
the following points are made.

1) The usually adopted L ladder circuit model is a poor ap-
proximation for a distributed CR line. The relative error of
the delay is as much as 30 percent, even if three ladder steps
are connected. On the other hand, the accuracy of mand T
ladder models is satisfactory. - Here, the relative error is less
than 3 percent if P3 or T3 models are employed.

2) An approximation with ladder circuit models becomes
better as ¢, and r, increase. For conventional word lines where
r,~Q.1, P2 is enough to achieve 3 percent error. The most
difficult situation for approximation occurs when the dis-
tributed CR line is without any capacitive load and driven
directly by a step voltage, namely ¢, =r, =0. In any case,
¢; and r, play an important role in determining the wiring
delay. The ladder circuit model coincides with a distributed
CR line as a four-port linear network when infinite steps are
connected. However, the simplest circuit that can simulate
the distributed CR line within a given error should be em-
ployed in practical use. For this point of view, the recom-
mended circuits are tabulated in Tables 111 and IV under vari-
ous drive and load conditions.

3) If r,/R is greater than 50, a distributed CR line can be
approximated with only one capacitance within 3 percent er-
ror. This assures the validity of widely used one-capacitance
approximation since the condition r,/R > 100 is usually met
in aluminum wiring.

4) The minimum pole of the transfer function dominates
a global shape of voltage response of a distributed CR line.
Consequently, one exponential term is sufficient to repro-
duce the step response [see (7)]. The wiring delay ¢ can
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Fig. 11. Dividing the distributed CR line into two parts.

be calculated as
too =1.02CR +2.21(c,r; + (R +1,C).

The relative error of this simple formula is less than 1.1 per-
cent for Cr, Ry <1 and 4 percent for the entire range of
parameters. These formulas will provide useful tools in esti-
mating the behavior of word lines in MOS LSI.

APPENDIX A
CURRENT AND VOLTAGE RESPONSE FOR STEP
VOLTAGE EXCITATION IN THE CASE OF Cyp =R =0

Exact time-domain solutions at the end of a distributed
CR line with short, open, and characteristic impedance temina-
tion is presented by Peirson [7]. Here, the time-domain solu-
tion for an arbitrary position of the line is given only for com-
pletion. First, a distributed CR line is divided into two partsat
x, as is shown in Fig. 11. Under the condition that I,(s") =0
(Cr =0), the following equation holds (see Appendix B):

Vo(s) = cosh (\/sCR) V, (s), (A1)
2
V(x,s)=cosh y/sCR (l - %) -V, (s). (A2)

Assuming that point 1 is excited by step voltage from zero to
U, that is,
v
Vo(s) = % >

the following expression for V{(x, s) is obtained by (A1-A3):

oo}

(A3)

v
Vix. s) =22 . A4
x,) 5 cosh /sCR (A4)
The inverse Laplace transformation of (A4) yields [8]
= (-1)F 1
E)Q-cﬁ=l +z > ucos [(k— —>1r (1 - i)]
Vee T K - 1 2 L
2
. e~ (k=172 x2(¢/CR) (AS)

The current i(x, t) is calculated as

o) =2 £ cortam(e- e (-2)]

- g~ (k=1/2)*n*(t[CR) (A6)
This can be obtained by differentiating (AS), and by using

ov(x, 1)

P r-i(x, ). (A7)
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APPENDIX B
DERIVATION OF TRANSFER FUNCTIONS

Transfer functions of 7, T, L ladder circuits and a distributed
CR line are derived in this order. The fundamental matrix F
for a unit block of an n-step 7 and T ladder circuit is expressed
as [9]

cosh(g) Z, sinh (g)
17 (B1)
Z5'sinh (g)  cosh (g)
where
sl s! sl
h(g)=1Y = [l +—= + = B
k(0= /% (1 4n2)/ (1+52). 2)
1
Zy= ==, (for w ladder) (B3)
— s
! 1 + -
CVs 4n?
1 1+ (for Tladder) (B4)
= — adder).
C\/s' 4n?

Since the total ladder circuit is created by concatenating the
unit block » times, the fundamental matrix F,, for total the
m and T ladder circuit is

cosh (ng)
Zy! sinh (ng)

When resistance , and capacitance ¢, are added to the ladder
circuits as shown in Fig. 12, the following equations hold:

Vo(S') _ 1 rt F Vz(s,)
L | o 1] " L)Yl

Ly(s')=5"c,V,(s").

Fp=()"= (B3)

Z, sinh (ng)
cosh (ng) .

(B6)

(B7)

Then, the transfer function T'(s") from point 0 to point 2 in
Fig. 12 is written as
NVt
7’ =128
Vo(s')

1

(1 +s'CpR ) cos (nt) - (I—Tf- + CTgp> vV -s' sin (n$)

(B8)
where
s’ s’ s’
tan { = “n—2<]+;‘;2—)/(1+2n—2), (B9)
(B10)

sl
0= l/l/l +4n“2’ (for 7 ladder)
sl
= 1 +——
b 4n?

(for Tladder). (B11)
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£

-O—WV\—Io— n-step ladder circuit 2
Iyls')y  I,ts") I,(s' o= ¢y
Vols') Vv ts") Vz(s')I

Fig. 12. Capacitance ¢, and resistance 7, are connected to either the L,
m, or T ladder circuit.

It is difficult to obtain the counterpart of (B8) for the L
ladder circuit. However, when ¢, =0, a transfer function of
the L ladder circuit happens to be equal to that of the T ladder
circuit with a resistance R/2n added at the input. Substituting
Ry by Ry + 1 n and setting Cy zero in (B8) leads to

1

cos (n¢) - L (RT +L>\/-—s’ sin (1$)
oL 2n

T ()= (B12)

where

sl

1+—7.
4n?

oL = (B13)

For a one-step L circuit, the transfer function is easily ob-
tained as

1
s'+(1+Cr)(1 +Ry)

Tpi(s')= (B14)

It is obvious that #, T, and L ladder circuits coincide with a
distributed CR line if infinite blocks are connected. This can
be readily confirmed by starting from the partial differential
equations which describe the line and Laplace transforming
them. # tending to infinity in (B2) and (B3), we have

ng  =/s"

limn— o

(B15)

1

=C\/s’ ’

Equation (1) is obtained, substituting the relation (B15) for
(B8).

Zo (B16)
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