

MULTIPLE-OUTPUT SHARED TRANSISTOR
LOGIC (MOSTL) FAMILY SYNTHESIZED
USING BINARY DECISION DIAGRAM

by

Takayasu Sakurai, Bill Lin, and A. Richard Newton

Memorandum No. UCB/ERL M90/21

16 March 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Multiple-Output Shared Transistor Logic (MOSTL)
Family Synthesized Using Binary Decision Diagram

Takayasu Sakurai*, Bill Lin and A. Richard Newton

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA94720, U.S.A.
*) On leave from Semiconductor Device Engineering Lab.,
Toshiba Corporation, Kawasaki, 210, Japan

Abstract

A new type of logic family, Multiple-Output Shared Transistor Logic (MOSTL) family, is
defined and a synthesis method for generating MOSTL is described. The MOSTL implements a
logic function not by combining logic gates such as NAND's and OR's, but by combining
transistors directly as switches. Since the MOSTL has more freedom in realizing a logic function, it
offers a smaller and faster circuit than the standard cell based approach. More concretely speaking,
'in the MOSTL, transistors are shared among several logic functions and thus the number of
. MOSFET's are reduced and this in turn may reduce delay time. It is best suited for the Sea-Of-Gates
designs and a full manual design where designers are permitted to build a circuit at a transistor level.

A synthesis method presented is based on Binary Decision Diagram (BDD) and usually gives a
good solution. The method is demonstrated to generate a sneak-path free circuit and in this sense
never fails to produce a solution, which is an important feature when applied to real designs.

A MOSTL together with the synthesis method will provide a systematic way to generate a
‘clever’ circuit, which could only have been built by the ingenuity of experienced circuit designers
otherwise.

;—" — EE—

T.Sakurai, B.Lin & A.R.Newton Multiple-Output Shared Transistor Logic (MOSTL)...

1. Introduction

Transistor level logic network synthesis has been attracting attentions for a long time[1-5, 14-
16} since the early and important work of Shannon[10,11]. Horn et al. [14, 16] in the middle of
; 50's proposed a symbolic matrix technique to tackle the problem and it is useful in the analysis of a

logic switching network but as for the synthesis it was based on the intuition and gave a limited

success.

There are two major advantages in using the transistor-level synthesis. One is the use of 'pass
variables' or 'pass transistors', a good example of which is a steering logic family introduced in
[17]. The other is a sharing of transistors among different switching paths. The former advantage is
pursued by recent researches [5, 15] and a big advance has been observed in this area but the latter
advantage is not studied well. Wu et al. [3, 4] investigated the sharing problem and a limited
success has been reported if the problem is confined to a single-contact, single-output network
where one variable can drive only one control gate of a transistor and the number of outputs is one.

Even for the general single-output case, the synthesis method is still based on intuition.

In this report, one practically important logic family, namely Multiple-Output Shared
Transistor Logic (MOSTL) family, is defined and a systematic way of synthesizing it is described.

The MOSTL is a single-stage logic gate and more general than the single-output logic gate. It utilizes

both of the pass variables and the transistor sharing and includes usual CMOS complex gates, a

steering logic and a barrel shifter.

T.Sakurai, B.Lin & A.R.Newton Multiple-Output Shared Transistor Logic (MOSTL}...

A synthesis method presented is based on Binary Decision Diagram (BDD)[6,7] and usually
gives a good solution. The method is demonstrated to generate a sneak-path free circuit and in this

sense never fails to produce a solution, which is an important feature when applied to real designs.

In Section 2, MOSTL is defined and examples are given. A synthesis method based on BDD
is described in Section 3, followed by a sneak-path free nature of the the generated circuits is
discussed in Section 4. Section 5 and 6 are dedicated for discussions and possible area of future

works and conclusions, respectively. In Appendix, a sample program is shown for the BDD-based

minimizer.,

2. Multiple-Output Sharing Transistor Logic (MOSTL)

The schematic diagram of the MOSTL is shown in Fig.1 and an example is given in Fig.2. In
Fig.1, the NMOS and PMOS blocks include a transistor circuit where any number of output
terminals are connected to a power line or to pass variable inputs according to the control variables.
From the left side of the boxes, control variables are input and from the bottom or the top of the
boxes, pass variables are incurred. The NMOS/PMOS block can include non-serial-parallel
structure and non-planar structure. Three variations are shown in the figure but several other

configurations are also possible.

The salient feature of MOSTL is the exclusion of mixing PMOS's and NMOS's in one circuit
block and that the only one power source attached to the NMOS logic part is VSS and the only

power line connected to the PMOS logic is VDD. By limiting the structure like this, it is possible to

eliminate a multi-stage nature and V1 problems from the synthesis. V1 , threshold voltage of

T.Sakurai, B.Lin & A.R Newton

Mulriple-Output Shared Transistor Logic (MOSTL)...

MOSFET, hinders the output to swing full VDD-VSS range and this degrades circuit margins if it is
not treated properly. The multi-stage nature makes the problem intractable. The MOSTL includes

most of the practical logic circuits such as CMOS complex gates, a barrel shifter, and a steering logic

family.
Pass Variable
© o ? YYY
in
n$ pmos = emos
Load > Logle >- togie
EE [+ | FE
' Out Out Out
3 \mos 3 \mos 3 NMos
> > >
% 7 AAA
Pass Variable
a) Load + NMOS b) CMOS + c) CMOS +

control variables

Fig.1 Schematic diagram of MOSTL

control variables +

pass variables

The example in Fig.2 is for a parity generator circuit for three input. The functional

descriptions are:

f=abc' +ab'c +abc +ab'c
f=abc +ab'c'+abc' +ab'c.

[Sakurai, B.Lin & A R.Newton Multiple-Output Shared Transistor Logic (MOSTL)...

A this expression, prime (') denotes an inverted input. This type of logic function is difficult to
} minimize by a standard cell approach. Direct implementation of the logic function by a parallel-serial
CMOS transistor network needs 48 transistors, while the MOSTL needs 20 or 16 transistors
depending on the use of pass variables. If the number of inputs is increased, the advantage becomes

more eminent.

Load

bvb bbv

a) Load + NMOS b) CMOS + c) CMOS +
control variables control variables +
pass variables

Fig.2 An example of MOSTL (a parity generator circuit)

3. Synthesis of the MOSTL Using Binary Decision Diagram (BDD)

In this section, a synthesis method is described. The synthesis begins by building a BDD. To

build the BDD, there are several methods. One method [6] is: first generate logic binary trees for

T Sakurai, B.Lin & A.R Newton Multiple-Output Shared Transistor Logic (MOSTL)...

separate logic functions as shown in Fig.3 and then merge these trees by merging common subtrees
from the bottom. In Fig.3, the left-most © in the left tree means that the function goes to '0" when
c=1 and goes to ‘1" when ¢=0. Consequently, the subgraph which is rooted at the © and the
subgraph which is rooted at the second left © in the middle tree is considered to be the same. So the
pointer to the second left © can be switched to the left-most © in the left tree. Applying this
procedure iteratively, the reduced BDD of the right graph can be obtained. The detailed description

of the procedure is found in [6].

The BDD has an important feature that if the input ordering is given, the reduce BDD is unique
so that it can be used as a standard form of logic function. The number of edges included in the
BDD depends on the ordering and the optimum ordering is difficult to find without an exhaustive
search. However, for less than 5~6 inputs, the exhaustive search is possible and since the MOSTL

is a single-stage gate, the number of input is small.

Once the BDD is constructed, it is easy to interpret the graph as a transistor circuit. The edges

directed to the terminal 1/ basically correspond PMOS block MOSFET and the edges directed to

the terminal E correspond to NMOS block MOSFETs. When constructing a PMOS block, a=1(0)

edge should be converted to a PMOSFET whose gate is controlled by a' (a). For a NMOS block,

a=1(0) edge should be converted to a NMOSFET whose gate is controlled by a (a'). A literal whose
two children are E and @ may be replaced by a pass variable input.

Further reduction in the number of transistors is possible when checks are made for all edges
if the edges can omitted or shorted. The example of this further reduction is explained next using a

more complicated example.

ISakurai, B.Lin & A R Newton Multiple-Output Shared Transistor Logic (MOSTL)...

Fig.3 Binary Decision Diagram (BDD) for a parity generator

Figure 4 and TABLE I show a Karnaugh map and a truth table of the more complicated
example, respectively. There are three output terminals and the functional description is:
f1 =AB'C+ A'D' + ABC

f2=ABD' + A'B
f3 =AC + A'BC' + AB'C'D'.

A
TN
123] 23
B
12 12| 3 3
C
1 123} 13
1 23
N
D

Fig.4 Karnaugh map of 'relay3' example

T.Sakurai, B.Lin & A.R Newton Multiple-Output Shared Transistor Logic (MOSTL)...

TABLE | Truth table of 'relay3' example

A B C DJft R
0 0 0 Ol 0 0
0 0 0 140 0 O
0 0 1 of1 o0 O
0 0 1 100 0 0
0 1 0 Oof1 1 1
0o 1 0 10 1 1
0o 1 1 of1 1 0
0 1 1 11 1 0
1 0 0 o0fo0o o0 O
1 0 0 tfo 1 1
1 0 1 O0f1 o0 1
1 0 1 11 1 1
1 1 0 O0fo0o 0 0
1 1 0 tfo o o
1 1 1 ofo o 1
1 1 1 tfo o 1

After constructing a BDD, the NMOS and PMOS blocks are extracted separately. Then each
edge in the graph is tested if it can be omitted or shorted. If it can be omitted or shorted, the
transistor can be eliminated. In this example of 'relay3'[1] in Fig.5, five edges are shortable. The
shorting process may create a sneak-path (see the next section), so that a careful validity checking of
the shorting should be done. One way of doing this is through a simulation, which is adopted in the

program listed in Appendix.

For this example, the number of transistors needed is 27 as shown in Fig.5, but a parallel-

serial implementation of the logic leads to 42 transistors.

ai, B.Lin & A.R Newton Multiple-Output Shared Transistor Logic (MOSTL)...

L]
Shorted path

PMOS Logic NMOS Logic |
Fig.5 Synthesized MOSTL for 'relay3' example

4. Edge-Merging and Sneak-Path

In the synthesis of MOSTL or more general transistor switching network, a sneak-path is a

difficult problem. An example of the sneak-path is shown in Fig.6. Suppose two functions f=a
and g = a + b are to be realized. First, the edge controlled by a is connected to f and the edge
ntrolled by b is connected to g realizing that f =a and g =b. Then to make g bea + b, vertices i

and j can be connected. Then g becomes correct but f becomes incorrect because there exists a path

from E to f through b. Thisis a sneak-path. Usually sneak-paths are not obvious and a critical

checking should be employed to reveal the sneak-paths.

T.Sakurai, B.Lin & A.R.Newion Multiple-Output Shared Transistor Logic {MOSTL)...

The essence of the sneak-path is the existence of contradiction on the assignment of logic
values on one vertex. In the example, when a = 0 and b = 1, g expects vertex j to be 1 while f

expects vertex j to be 0, which is a contradiction.

Fig.6 Sneak-Path

A very powerful transformation in constructing MOSTL is 'edge-merging' as shown in Fig.7.
The essence of the edge-merging is to merge two edges with one node common controlled by the

same variable into one edge. Other than the BDD based method described above, this edge-merging

seems promising. The drawback of the edge-merging, however, is the creation of sneak-path.

=
Edge Merging

Network B

Fig.7 Edge-Merging technique.

X X X

10

i & A.R Newton Mulriple-Output Shared Transistor Logic (MOSTL)...

be demonstrated that the BDD based method generates a network which does not contain
| First, separate logic binary trees do not have sneak-paths because only one path is
’Ta time which connects an output to the power source. The reduce operation in the BDD
‘ cheme does not create any sneak-paths. This latter part is explained in more detail. The

pration includes only two kinds of procedures as shown in Fig.8.

| Pprocedure is an elimination procedure and the other is a subgraph sharing procedure. The
: on procedure does not introduce a sneak-path because the only thing this procedure does is
B one physical vertex instead of two logically shorted vertices. If there exists a sneak-path

P procedure, it must be existed before the procedure.

1he subgraph sharing procedure does not introduce any sneak-paths either because whenever

" expects 0(1) on vertex n, i also expects 0(1) on the vertex n. So there is no contradiction

no sneak-paths.

Fig.8 Two basic procedures to reduce BDD. The sneak-path free nature is
demonstrated by using this figure.

11

‘ T.Sakurai, B.Lin & A.R.Newton Multiple-Output Shared Transistor Logic (MOSTL)...

I
J S. Discussions and Future Work
i

The synthesis method presented here based on a BDD usually gives a good-quality solution to
a MOSTL generation problem as in the example of relay3 circuit. Sometimes it gives the optimum
transistor network as in the example of parity generator circuits. However, the method does not
always guarantee the optimality so that sometimes the method generates a bad circuit. In this sense,
some procedure is preferable to be taken to improve the generated transistor network. Simulated

Diffusion or Simulated Annealing can be a choice.

| Other than the synthesis method itself, a research as a VLSI synthesis system is of interest.
The total system may look like Fig.9. We can make use of a standard logic minimizer[8,9] and the
several outputs of logic functions generated by the logic minimizer which share common inputs are
bundled together and input to a MOSTL synthesizer. The transistor sharing and the pass variables

are treated properly in the MOSTL synthesizer.

The partitioner in Fig.9 and MOSTL generator should be working cooperatively or iteratively
S0 as to optimize the area and speed. A research should also to be carried in this area. That is,

multi-stage MOSTL optimization is the important next step. As is mentioned in previous section, the

inclusion of don't care condition is another area to look into, although simple inclusion is easy.

12

; RLin & A.R.Newton Multiple-Output Shared Transistor Logic (MOSTL)...

Behavioral Synthesis

Logic Description

Standard Logic Optimizer (ex. MIS!I)

Partitioner to Multiple-Output Function
Modules

|

MOSTL Generator

Mapping to SOG / Module Generator

Y

Chip

Fig.9 MOSTL generator incorporated in a design system

6. Conclusions

B A new family of logic circuit is introduced and a synthesis method is presented based on a
Although this method does not guarantee to give the optimum circuit and some extensions are
ble, it usually gives a good solution. The method is demonstrated to generate a sneak-path free

it and in this sense never fails to produce a solution, which is an important feature when applied

pal designs.

A MOSTL together with the synthesis method will provide a systematic way to generate a
pver’ circuit, which could only have been built by the ingenuity of experienced circuit designers

wise. Sea-Of-Gates and a fully manual design can be benefitted by the proposed method.

13

s ———— T

!
§
i
|

-T.Sakurai, B.Lin & A.R.Newton Multiple-Output Shared Transistor Logic (MOSTL)...

Acknowledgments

The encouragement of Prof. B.Brayton, Prof. A.Sangiovanni-Vincentelli, Y.Unno,
Y.Takeishi, H.Yamada and T.lizuka throughout the course of this work is appreciated. This work

was supported by a grant from Toshiba Corporation.

14

rai, BLin & A.R Newton 7 Multiple-Output Shared Transistor Logic (MOSTL)...

References

: 1 H.J.Beuscher, A.H.Budlong, M.B.Haverty, Electronic Switching Theory and Circuits, Section

10, Van Norstrand Reinhold Berkeshire, England.

P N.Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall.

Bl M-Y.Wu, LN.Hajj, "Switching Network Logic Approach to Sequential MOS Circuit Design,"

'~ IEEE Trans. on CAD, CAD-8, No.7, pp.782-794, Jul.1989.

 M-Y.Wu, W.Shu, S-P.Chan, "A Unified Theory for MOS Circuit Design - Switching Network

Logic,” Int. J. Electronics, Vol.58, No.1, pp.1-33, 1985.

C.Pedron, A.Stauffer, "Analysis and Synthesis of Combinational Pass Transistor Circuits,”

IEEE Trans. on CAD, CAD-7, No.7, pp.775-785, Jul.1988.

P] R.E.Bryant, "Graph-Based Algorithms for Boolean Function Manipulation,” IEEE Trans. on

Computers, C-35, No.8, pp.677-691, Aug.1986.

S.B.Akers, "Binary Decision Diagrams," IEEE Trans. on Computers, C-27, No.6, pp.509-516,
Jun.1978.

8] R.Rudell, A.L.Sangiovanni-Vincentelli, "ESPRESSO-MV: Algorithm for Multiple Valued

Boolean Minimization,” CICC'85, May 1985.

9] R.Brayton et al, "Multiple-level Logic Optimization System,” ICCAD'86, pp.356-359,
Nov.1986.

15

M e e

T.Sakurai, B.Lin & A.R Newton Multiple-Output Shared Transistor Logic (MOSTL)...

[10] C.E.Shannon, "A Symbolic Analysis of Relay and Switching Circuits,” AIEE Transactions,

vol.57, pp.713-723, 1938.

[11] C.E.Shannon, "The Synthesis of Two-Terminal Switching Circuits,” Bell System Tech. J.,

28, pp.59-98, 1949.

[12] EJ.McCluskey, "Minimization of Boolean Functions," Bell System Tech. J., pp.1417-1445,

Nov.1956.

[13] E.J.McCluskey, "Detection of Group Invariance or Total Symmetry of a Boolean Function,”

Bell System Tech. J., pp.1445-1453, Nov.1956.

(14] F.E.Horn, L.R.Schissler, "Boolean Matrices and the Design of Combinational Relay

Switching Circuits,” Bell System Tech. J., pp.177-202, Jan.1955.

[15] D.Radhakrishnan, S.R.Whitaker, G.K.Maki, "Formal Design Procedures for Pass Transistor

Switching Circuits,” IEEE J. Solid-State Circ., SC-20, No.2, Apr.1985.

[16] D.Lewin, Design of Logic Systems, Section 5, Van Norstrand Reinhold, Berkeshire, England,

1985.

[17] C.Mead, L.Conway, Introduction to VLSI Systems, Addison-Wesley, Massachusetts, 1980.

16

in & A R Newton Multiple-Output Shared Transistor Logic (MOSTL...

Appendix A Program Listing

source codes are shown in the following pages. The programs are written in

p-Ver. 1.0 for Macintosh SE/30. The following is an example of the input to the program.

Input example of BDD synthesizing program

D numbers in the first line are number of input and output.
B following lines include function description.
ually they are the output bit pattern of the function corresponding the input

HHEFOOKFKFRFEFOOOFFOOOO

OO O0OOKFHO KO MM

17

Program for Generating Optimized Transistor Networks Using BDD 1

OPTION BASE 0

DEFINT a-w

E = 10000: nieaf = 1: nfunc = 1: XD = V=1

DM SHARED bitm(nleaf ,nfunc), obitm(nleaf.nfunc)

DM SHARED XD2YD(nXD), VPat(nV), permv(nV), minPermV(nV)
DIM SHARED XL(nXD), XH(nXD), YL(nXD). YH(nXD), YV(nXD)

DIM SHARED pobitm(nleaf, nfunc), Vaxp1(nV), v2xbn(nV), V2YD1(nV),

V2YDn(nV)

DIM SHARED nYFan(nXD), YFan(nXD, INT. (nXD/ 2)), YFanV(nXD,

INT(nXD / 2)), visited(nXD)

DIM SHARED queue(500)

DiM SHARED YHbut(nXD), YLbuf(nXD), YVbuHnXD)
‘~=V :input variable L :iow H : high

--— Pat : Pattern

--— X : original data

-—- Y : reduced data

Windower:

'«=- initiaize window 1 ----
WINDOW 2,*Graphics Window”, (200,20)-(480, 300),1
WINDOW 1."Text Window”, (0.20)-(200, 300).1
TEXTSIZE 8
TEXTFONT 3
OPEN "scm:” FOR OUTPUT AS #1

"emee MONUY -
MENU 1,0.1 "File"
MENU 2,0.1 "Edit"
MENU 3,0,1,"8DD"
MENU 4,0,1,"Params”

MENU 1.1.1 "Load"

MENU 1,2.1."Show Loaded Data"
MENU 1,3.1,"Output Select”
MENU 1,4,0,"Print"

MENU 150"

MENU 1,6.1."Quit™: cmdkey 1,6,"Q"

MENU 2,1,0,"Copy”*:cmdkey 2,1,°C"

MENU 3,1,1,"Create & Reduce”
MENU 3.2,1 *Exhaustive Search”
MENU 3.3,1."Minimize"

MENU 3.4,1,“Show BDD"

MENU 4,1,0"Params Set*

ON MENU GOSUB Menucheck: MENU ON
Idle:
GOTO Idle

Menucheck:

menunumber = MENU(0)

menuitem = MENU(1)

MENU

ON menunumber GOSUB Filer, ClipBoarder, Bdder, Setter
RETURN

Filer:

ON menuitern GOSUB Loader, Shower, Outer, Quitter, Quitter ,Quitter

RETURN

Quitter:
CLOSE
SetCreate “bdd.out®, " MSWD"
WINDOW CLOSE 1
WINDOW CLOSE 2

END

ClipBoarder:
ON menuttem GOSUB CiipCopier
RETURN

Bdder:

showFlag= 111

ON menuitem GOSUB BDDCreateReducer, BDDExhaustiver,
BDDMinimizer, BDDShower
RETURN

Setter:
ON menuitem GOSUB Quitter
RETURN

18

ClipCopier:
OPEN "CLIP:PICTURE™ FOR OUTPUT AS #3
PRINT#3, image$
CLOSE #3

RETURN

Eraser:
WINDOW 2
WINDOW 1

image$ = =
CLs
RETURN

Loader:

"= load data -—-
infle$ = FILESS(1,"TEXT")
IF (infle$ = ™) THEN RETURN
OPEN infie$ FOR INPUT AS #2
‘- input # of input & # of output -—-
INPUT #2, nV, nfunc
nleaf =2 nv
ERASE bitm, obtm
DIM SHARED bitm(nleaf.nV), obitm{nleaf, nfunc)
'--— input output bit pattern ----
FOR ileaf = 1 TO nleaf

LINE INPUT #2, iniine$

FOR ifunc = 1 TO nfunc

obitm(ileaf, #func) = VALMIDS(iniine$, Z'(ifunc-1)+1, 1))
NEXT

NEXT
'~ initialize bitm ~--
FOR ileaf = 1 TO nleaf
rernainder = ileaf - 1
FOR WV =nVTO 1 STEP -1
thisbit = remainder MOD 2
bitm(ileaf, V) = thisbit
remainder = (remainder - thisbit) / 2
NEXT

NEXT
CLOSE #2
RETURN

Shower:

*-~- show loaded data --—-

WINDOW 1

PRINT #1, *nVar="nV, “rfunc="nfunc

FOR ileaf = 1 TO nleaf
FORN=1TOnV

PRINT #1, bitm(ieaf, V)"

NEXT

PAINT #1,* =
FOR ifunc = 1 TO nfunc

PRINT #1, obm(ileaf, func);” ";
NEXT

PRINT #1,~
NEXT
RETURN

Outer:
‘-~ output device select ----
WINDOW 1
PRINT "Output to screen{(0)"
INPUT “or new file(1) or append to the file(2)"; outdev
CLOSE #1
outfile$ = “bdd.out"
SELECT CASE outdev
CASE 0
OPEN “scm:* FOR OUTPUT AS #1
CASE 1

‘outfie$ = FILES$(0)
IF (outfile$ = =) THEN RETURN
OPEN outfle$ FOR OUTPUT AS #1
CASE 2
‘outfie$ = FILESS(1,"TEXT™)
IF (outfile$ = =) THEN RETURN
OPEN outfle$ FOR APPEND AS #1
PRINT #1,™: PRINT #1,~
CASE ELSE
OPEN “scm:* FOR OUTPUT AS #1
END SELECT
RETURN

BDDinttiakizer:

Program for Generating Optimized

'—- Initialize BOD -—~-
nD=(2"nV-1)"nfunc+1
'~-- define arrarys —--
ERASE XD2YD, VPat. permV, minPermV, XL, XH, YL, YH, YV
ERASE pobitm, V2XD1, V2XDn, V2YD1, V2YDn
ERASE nYFan, YFan, YFanV, visited
ERASE YHbuf, YLbuf, YVbuf
DiM SHARED XD2YD(nXD), VPat(nV), permV(nV), minPermV(nV)
DiM SHARED XL(nXD), XH(nXD), YL{nXD), YH(nXD). YV(nXD)
DM SHARED pobitm(nieaf. nfunc), V2XD1(nV), v2XDn(nV),
V2YD1(nV+1), V2YDn(nV+1)
DM SHARED nYFan(nXD), YFan{nXD, INT(nXD / 2)), YFanV(nXD,
INT(nXD / 2)). visited(nXD)
DM SHARED YHbuf(nXD), Ylbuf(nXD). YVbuf(nXD)
XL(0) = 0: XH(0) = 0: XL(1) = 1: XH(1) = 1
'—- inttialzation of V2XD1, V2XDn, |, h -
V2XD1(1) = 2: V2XDn(1) = 2 * (nV-1) * nfunc + 1
FORNV=2TOnv
V2XD1(iV) = VaxXDn(iV-1) + 1
VaXDn(iV) = V2XD1(iV) -1 + 2~ (nV - V) * nfunc
XLVZ2XD1(iV)) = V2XD1(iV-1)

XH(V2XD1(V)) = V2XD1(iv-1) + 1
NEXT

RETURN

BDDCreateReducer:

'-—- BODD create and reduce according to the input perm ---—-
GOSUB BDDilnitializer

WINDOW 1

PRINT "Enter permutation pattern.”

PRINT "There should be";nV;" numbers separated by blank."
LINE INPUT infine$

FORN=1TOnV

permV(iV) = VAL(MIDS(infine$, 2*(iV-1)+1, 1))

'PRINT "permV(".iV.")="permV(iV)

NEXT

GOSUB BDDTreeCreator

GOSUB BDDReducer

GOSUB BDDChecker

GOSUB BDDMinimizer

GOSUB BDDCoster

RETURN

BDDExhaustiver:

GOSUB BDDinttializer

'---- permutation matrix initialize ----

FORV=1TOnV

permV(iV) = iV

NEXT

endPemiFlag =0

startPermfFlag = 1

'—-- permutaion loop —--

minBDDtotalCost = E

WHILE (endPermflag = 0)

GOSUB GeneratePerm

GOSUB BDDTreeCraator

GOSUB BDDReducer

'GOSUB BDDChecker

GOSUB BDDCoster

¥ (totalCost < minBDDtotaiCost) THEN

minBDDtotalCost = totalCost

FORN=1TOnV

minPermV(IV) = permV(iV}

WEND

'~ re-generate minimum BDD -
FORV=1TOnV

permV(iV) = minPermV(iV)

NEXT

GOSUB BDDTreeCreator

GOSUB BDDReducer

GOSUB BDDChecker

GOSUB BDDCoster

RETURN

BDDTreeCreator:
] '-.- scramble function data according to permutation -
FOR ileaf = 1 TO nieaf
FORV=1TOnVv
VPa(iV) = bitm(ileaf, permV(iV))
NEXT

target = 1

Transistor Networks Using BDD 2

FORNV=1TOnV
target = target + VPat(iV)* 2 A (nV - V)
NEXT
FOR #func =1 TO nfunc
Nmpobmn' (target, func) = obitm(ileat, ifunc)

NEXT
‘--— create BDD leaf —-
FOR ideaf = 1 TO nileaf STEP 2
FOR ifunc = 1 TO nfunc
XD = (func-1) * (nleat/2) + (ileaf-1)/2 + 2
XL(XD) = pobitm(ieaf, func)
XH(XD) = pobitm(ileaf+1, Func)
NEXT

NEXT
‘— initialize XL & XH -~
FORNV=2TOnV
FOR iXD = V2XD1(V)+1 TO V2XDn(iV)
XLEXD) = XUIXD-1) + 2
XH(IXD) = XL(XD) + 1
NEXT

NEXT
FORiIYD=0TO nXD
XD2YD(YD) = iYD
YLGYD) =E: YHGYD) = E
NEXT

YL(0) = 0: YH(0) = 0: YL(1) = 1: YH(1) = 1
RETURN

BDDReducer:
*--— reduce BDD -—-
V2YD1(1) = 2: V2YDn(1) = 2: speciaVertex = 0
FORV=1TOnV
FOR XD = V2XDH{V) TO V2XDn{iV)
‘=-- i high chiki = low child, eliminate the vertex -—-
IF (XD2YD{XL(IXD)) = XD2YD(XH(IXD))) THEN
XD2YD(XD) = XD2YDXL({IXD))
IF (V=nV) THEN
YL(V2YDn(V)) = XD2YD(XL(XD))
YH(VZYDn(V)) = XD2YD(XH(XD}))
YV(V2YDn(iV)) = V
XD2YD(XD) =YD
V2YDn(\V) = V2YDn(iV) + 1
specialVertex = specialVertax + 1
ENDIF
ELSE
iYD =V2YD1(iV)
BDDReduceloop:
'—- check for the same subtree which already exists -—-
IF (XD2YD(XL(XD)) = YL{IYD)) AND (XD2YD(XH(XD)) = YH(IYD))

XD2YDRD) =YD
GOTO BreakBDDReduceLoop
ELSE
F (YD >= V2YDn(iV)) THEN
YL(V2YDn(iV)) = XD2YD(XL(XD))
YH(V2YDn(iV)) = XD2Y D(XH(IXD))
YW(V2YDn(V)) = M
XD2YD(XD) = YD
- -+ 1

V2YDn(iV) = V2YDn(V)
GOTO BreakBDDReduceLoop
ENDIF
ENDF
YD=VD+1
GOTO BDDReduceloop
BreakBDDReduceLoop:
ENDF
NEXT
*-—- set first and last iYD for the next level —-
V2YDA(V+1) = V2YDn(iV)
V2YDn(iV+1) = V2YDn(V)
NEXT
YD = V2YDr(nV) - 1
RETURN

THEN

BDDCoster:

‘- cost calculation and output —-

zeroedge = 0: oneedge = 0

FORYD=2TOnYD
IF YL{YD) =0 OR YH(YD) = 0 THEN zeroedge = zeroedge + 1
IF YL(YD) = 1 OR YH(YD) = 1 THEN oneedge = oneedge + 1

NEXT

ncost =2 * (nYD - 1 - specialVertex) - oneedge

19

S

Program for Generating Optimized Transistor Networks Using BDD 3

peost = 2 * (nYD - 1 - specialVertex) - zeroedge

totalCost = ncost + pcost

PRINT #1, “perm=",

FORV=1TOnV

PRINT #1, parmV(V);

NEXT

PRINT #1.=

PRINT #1, USING "nMOS=## pMOS=### T=###", ncost, pcost,
totalCost
RETURN

BDDChecker:
‘- checking the validity —--
FOR #unc = 1 TO nfunc
‘-—. gcan every output function -—-
FOR ideaf = 1 TO nieaf
iYD = nYD - (nfunc - func)
‘- §CaN every leaves ——
FORV=1TOnV
'VPai(V) = bitm(ileaf, permV(iV))
VPat(iV) = bitm(ileaf, iV)
F (YV(YD)=nV -V + 1) THEN
IF (VPal(iV) = 0) THEN
iYD = YL(iYD)
ELSE
iYD = YH(iYD)
END W
ENDF
NEXT
IF (iYD <> pobitm(ileaf, #func)) THEN
‘.= check falled -—

PRINT #1, "Check faied at ifunc, leaf”, func, ileaf, iYD, pobitm(leaf,

ifunc). obitm(ileal, func)
PRINT #1, “info on perm= ",
FORV=1TOnV
PRINT #1, permV(iV),
NEXT
PRINT #1,™
PRINT #1, “info on VPat=".
FORN=1TOnV
PRINT #1, VPa(iV);

PRINT #1.~
ENDiF
NEXT
NEXT
RETURN

GeneratePerm:
'.--- generate permutation one by one in lexicographic order —--
IF (startPermflag = 1) THEN
startPermi-lag = 0
RETURN
END IF
‘.- find the largest i so that p(i) < p{#+1) —
i=nV-1
WHILE (permV(i) > permV(i+ 1))
i=i-1
IF (i=0) THEN
endPermilag = 1
GOTO PermLoopEnd
ENDF
WEND
'—- find the smallest pj so that i < j and pi < pj ~—
pi = permV(})
pi=nV+1
FORjin=#1TO NV
IF (pi < permV(jin)) AND (permV{(jin) < pj) THEN
pi = permV(iin)
END W
NEXT
*=-- swap p()) < p(j) -~
SWAP permV(i), permV(j)
‘--- reverse the order following pj ---
temp=nV
iSwapEnd = INT((nV - (+1) + 2)/ 2)
FORV = i+1 TO +iSwapEnd
SWAP permV(iV), permV(itemp)
temp=itemp- 1
NEXT

Permi.oopEnd:
RETURN

20

BDDShower:
8f1 = INT (showFlag /100): showflag = showflag - 100 * sf1
sf2 = INT (showFlag / 10): showFlag = showflag - 10~ sf2
813 = INT (showflag/ 1)
IF (sf1 = 1) THEN
‘-- BDD info display -
‘print #1, "# input= "V, oulput= “nfunc
PRINT #1, "perm=",
FORV=1TOnV
PRINT #1, permV(iV),
NEXT

PRINT #1~
PRINT #1, USING nMOS=### pMOS=### T=###", ncost, pcost,
totalCost
PRINT #1, CHR$(13)+"oneFlag="oneflag
FORIYD=0TOnYD
PRINT #1, USING "ID=## L=##¥## Ho$#### V=", YD, YL(YD),

YH(iYD), YV(iYD)
B8DDShowerloop:
F (MOUSE(0) <> 0) GOTO 8D0ShowerLoop

ENDF
*---. display minimized switching network ----
IF (sf2= 1) THEN
oneFlag = 0: GOSUB MatShower
END W
IF (sf3=1) THEN
oneflag = 1: GOSUB MatShower
ENDIF
RETURN

MatShower:
PRINT #1, CHR$(13)+"onefFlag=";oneflag
FORiYD=0TOnYD
PRINT #1, USING “ID=## L#i### H=tss V=##". iYD, YO1L{oneFlag.
iYD), YO1H(oneFlag, iYD), YO1V{oneFlag, iYD)
MatShowerloop:
F (MOUSE(0) <> 0) GOTO MatShowerl.oop
NEXT
RETURN

BDDMinimizer:

short = 1000: termOpen = 2000

*.... consider one tree and zero tree separately ----

FOR onefFlag=0TO 1

FORIYD=0TOnYD
‘- gtore YH, YL, YV into buffer —-
YHbu(TYD) = YH(YD): YLbutGYD) = YL(IYD): YVbufGYD) = YV(iYD)
8 ane

pecial
I (oneFlag = 0) THEN
IF (YH(iYD) = 1) THEN YH(YD) = termOpen
IF (YL(iYD) = 1) THEN YL(iYD} = termQOpen
ELSE
IF (YH(iYD) = 0) THEN YH(iYD) = termOpen
IF (YL(iYD) = 0) THEN YL(iYD) = termOpen
ENDW
NEXT
‘+—- making shorts -~
FORiIYD=2TOnYD
*-— for fow edge ——
oY = YI(YD)
*-—- gkip terminal open edge -~
IF (oldY <> termQOpen) THEN
YL{YD) = YL(IYD) + short
GOSUB ShortOpenOK
IF (retSOOK = 0) THEN YL(IYD) = oldY
ENDF
- for high edge ——
oldY = YH(IYD)
‘-~ gkip terminal open edge -~-
IF (oldY <> termOpen) THEN
YH(IYD) = YH(YD) + short
GOSUB ShortOpenOK
IF (retSOOK = 0) THEN YH(YD) = oldY
ENDF
NEXT

making opens ----
FORiYD=2TOnYD
*-— for low edge —--
oldY = YL({YD)
*-—- gkip terminal open edge -—-
IF (oldY <> termOpen) THEN

N

YLGYD) =YD
GOSUB ShortOpenOK
~- # not openable, resume the edge
IF (retSOOK = 0) T =oldy
ENDIF) THEN YL(YD) = oldy
- for high edge —
oldY = YH(YD)
---- skip terminal open edge -~
|F'(OHY <> Qmm) THEN
YH(YD) =iyD
GOSUB ShortOpenOK
~=- i not openable, resume the —

IF (retSOOK = 0) T| -
ENDIF) THEN YHGYD) = oidy

NEXT
-~- slore separate BDD -
g -0
YD) = YL(YD)
fing. iYD) = YV(iYD)
PRowiore N N NN —
YH(YD) = YHoul(iYD): YL(YD) = YLbuliYD): YV(IYD) = YVbul(iYD)
NEXT

v {stored in nYFan)

O(YD). 3(#otfans) 4 15 3 (fars)—-
QP): 2(*offans) 4 7 (fans)——
D). t(#offans) 6 (fans) -

example -—-

210

's equals to 0 is shorted path —--
% Vs < 0 is low child path -—-
lire nYFan —--
lhg = 100: GOSUB BDDShower
P=0TOnYD

D)=0

p=0TO nYD
=0TO 1
- for high and low edge -—-
3 =0) THEN jYD = YW(iYD) ELSE jYD = YH(YD)
i~ skip open path —--
JFGYD <> iYD) AND (jYD <> termOpen) THEN
"—- add low or high child to YFan ——
¢ PRINT #1, "nYFan, iYD. JYD, HL, chdd":nYFan(iYD)iYD;YD;HL
i WYFan(iYD) = nYFan(iYD) + 1
YFan(iYD, nYFan(iYD)} = {YD
¥ F (iHL = 1) THEN YFanV(iYD, nYFan(iYD)) = YV(iYD) ELSE
D, nYFan(iYD}) = -YV(iYD)
*—- consider short path ——
¥F (YD < short) THEN
PRINT #1, "nYFan, iYD, jYD, iHL, non-s":nYFan(iYD);iYD;YD;HL
aYFan(YD) = nYFan(YD) +1
YFan(YD, nYFan(jYD)) = i¥D
If (iHL = 1) THEN YFanV(jYD, nYFan{jYD)) = YV(iYD}) ELSE
GYD. nYFan(YD)) = -YV(iYD)
ELSE

jYD =YD - short
PRINT #1, *nYFan, iYD, YD, HL, short™nYFan(iYD)iYD;YD:iHL
nYFan(YD) = nYFan(jYD) +1
YFan(jYD. nYFan(jYD)) = iYD
YFanV(jYD, nYFan(YD)) =0
BND IF
. ENDF
- NEXT
2,
BOSUB FanShower:

¥ "= show fanout matrix —--
FORIYD=0TOnYD
PRINT #1, "YFan (YFanV): *;
FOR jYD = 1 TO nYFan(jYD)
PRINT #1, USING "## (##) ".YFan(iYD, jYD).YFanV(YD jYD);
NEXT
- PRINT #1,™
: NEXT
URN

Program for Generating Optimized Transistor Networks Using BDD

21

4

ShortOpenOK:
. check the validity of shorts and opens —..
- Mitialize fanout matrix and visited array ----

GOosuB MakeFanMatrix

FORYD=0TO nYD
visted(iYD) = 0

NEXT

-—- scan every leaves --.
FOR ileaf = 1 TO nieaf
I';:-- start from root «—-

(oneFlag = 0) THEN iYD = 0 -
nq=0:ig=0 ELSEiYD =1
queusli) = kYD

_ Bl detamarto>
U SseoarT

valYD(YD) = E
NEXT

FORN =410 ™
VPat(V) = bimiilead, IV)
NEXT

SOOKLoop:
-~ take one from the queue I possire, otherwise break -—-
IF (iq > nq) THEN GOTO BreakSOOKLoop
KYD = queue(i)
q=iq+1
'~-- sea if the node is visited -
IF (visted(kYD) = 1) THEN GOTO SOOKLoop
visted(kYD) = 1
‘~--- load fanouts in the queue which is connected o this node -—-
FOR YD = 1 TO nYFan(kYD)
*--— #f shorted or conducted. add to the queue -—-
V = YFanV(kYD, YD)
¥ ((IV < 0) AND (VPat(ABS(V)) = 0)) OR ((V > 0) AND
(VPat(ABS(iV)) = 1)) THEN conducted = 1 ELSE conducted = 0
IF (V = 0) OR (conducted = 1) THEN
ng=nq+1
queue(nq) = YFanV(kYD, {YD)
ENDIF
NEXT
BreakSOOKLoop:
‘---- by now, visited nodes are connected 1o 8OUrCe ---
*--- check ¥ all one(zero) output are visited from source 1(0)
*---- and all zero(one) output are not visited from source 0(1)
FOR ifunc = 1 TO nfunc
iYD = nYD - (nfunc - ifunc)
shortFlag = 0

openFlag =0
I (visited(iYD) = 1) AND (oneFlag < pobim(ileaf, func)) THEN
shortFlag = 1
IF (visited(iYD) = 0) AND (oneFlag = pobimyileaf, #func)) THEN
openfiag = 1
‘~- report short or open —-
IF (shortFlag = 1) OR (openFlag = 1) THEN
retSOOK = 0

"-— check failed -—
IF (shortFlag = 1) THEN

PRINT #1, "Short at func, deaf”, ifunc; deaf
ENDF
IF (openfiag = 1) THEN

PRINT #1, "Open at func, ileaf™; func; leaf
ENDIF
PRINT #1, "pobitm, obtm="; pobitm(ileaf, #func); obim(ileaf, func)
PRINT #1, “info on perm=";
FORNVN=1TOnV

PRINT #1, permV/(iV);
NEXT

PRINT #1*
PRINT #1, “info on VPat=",
FORV=1TOnvV
PRINT #1, VPai(V);
NEXT :
PRINT #1~
BEND IF
NEXT
NEXT
RETURN

