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Abstract —A 32-kbyte cache macro with an experimental reduced in-
struction set computer (RISC) is realized. A pipelined cache access is
proposed to realize a cycle time shorter than the cache access time. A
double-word-line architecture combhes single-port cells, dual-port cells,
and CAM cells into a memory array to improve silicon area efficiency. The
cache macro shows 9-ns typicaf clock-to-HIT delay owing to several new
circnit techniques, such as a new section word-line selector, a duef transfer
gate, and 1.0-pm CMOS technology. It supports mutti-task operation with
Iogicaf addressing by a selective clear circuit. The RfSC includes a
double-word load/store instruction using a 64-bit bus to fully utilize the
on-chip cache macro. A new test scheme enables measurement of the
internal signal delay. llre test device is designed based on the unified
design rules (UDR) scalable throngh mnltigenerations of process tecfmolo-
gies down to 0.8 pm.

I. INTRODUCTION

CPU PERFORMANCE has been increasing with the
improvement of CPU architecture, circuit and pro-

cess technologies. Recently, reduced instruction set com-
puter (RISC) architecture has accelerated CPU perfor-
mance [1]. A RISC architecture simplifies hardware and
pipeline stages, and realizes less cycles per instruction and
a shorter cycle time than a complex instruction set com-
puter (CISC) architecture.

Owing to these features, a RISC architecture requires
very wide memory bandwidth, which is a key problem in
the RISC system. For this reason, high-performance cache
memory is required in the RISC architecture.

Several attempts have been made to enlarge memory
bandwidth by including cache memory on the same chip
[2]. On-chip cache size has reached up to 12 kbytes [3].
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1. Cycle-time comparison among various integration types of cache
memory based on the same Si technology level.

However, the formerly reported cache size is not sufficient
to obtain the maximum performance of RISC architecture.

In this paper, a 32-kbyte cache macro is described. This
cache macro combines high hit ratio and high clock rate
operation to provide sufficient effective memory band-
width for a high-speed RISC.

Section II introduces the merits of an on-chip cache
memory and shows the requirement for on-chip cache
memory. An overview of this cache macro is given in
Section III. In Section IV, pipelined cache operation is
proposed, which is one of the key techniques to reduce
cycle time. Memory core architecture is described in Sec-
tion V. In Section VI, several new circuits are explained.
Process technology is described in Section VII. Perfor-
mance of the test device is summarized in Section VIII,
and Section IX is dedicated to the conclusion.

H. WHY ON-CHIP CACHE MEMORY?

Cache memory is a reliable method to improve memory
bandwidth. Among several approaches to organize cache
memory, on-chip cache memory is the most effective ap-
proach. Fig. 1 shows a cycle-time comparison among vari-
ous integration types of cache memory in a TTL 1/0
system. On-chip cache memory achieves more than twice
the operational frequency of any other type of off-chip
cache memory because it eliminates the inter-chip commu-
nication delay, denoted IN/OUT in the figure. The cycle-
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time difference between on-chip and off-chip cache mem-
ory has become increasingly larger as Si-technology has
advanced, because the cycle time of on-chip cache memory
has been decreasing due to the improvement of process
technology, while the cycle time of off-chip cache memory
has reached the interface limitation, which is about
50 MHz in TTL interface. Moreover, on-chip cache mem-
ory easily employs a wide bus width. On the other hand, in
the off-chip cache memory it is not easy to employ a wide
bus width, which increases board area and system cost and
causes serious noise problems.

There are several requirements in on-chip cache mem-
ory. Effective memory bandwidth in a hierarchical mem-
ory system with on-chip cache memory is expressed by
following formula:

effective memory bandwidth
= (hit ratio) x (cache memory bandwidth)
+(1 – hit ratio) X (off-chip memory band-
width)

cache memory bandwidth
= (cache operation
bus width)

off-chip memory bandwidth
= (off-chip memory
(off-chip bus width)

frequency) X (on-chip

access frequency) X

From these equations, high hit ratio, high-speed opera-
tion, and wide bus width are necessary for high-perfor-
mance cache memory. The hit ratio depends mainly on
cache size. Therefore, a large high-speed on-chip cache
memory with wide bus width is required in a RISC system.

HI. CACHE OVERVIEW

Table I summarizes system level features of the newly
developed cache macro and an experimental RISC on a
single chip. This cache macro was designed for the feasibil-
ity study of a large scale on-chip cache macro, so we
adopted the simplest way of cache configuration. The
cache macro is organized as a 32 kbyte direct-mapped
configuration of data/instruction unified cache. A cache
size of 32 kbytes is the largest ever reported. Bus operation
is synchronous. The RISC includes a double-word
load/store instruction. With the double-word load/store
instruction, the RISC can handle two sequential words at a
time using a 64-bit data bus, which doubles the perfor-
mance in processing two consecutive 32-bit-data and/or
64-bit data.

Fig. 2 shows the cache configuration. Each cache line
has four process ID (PID) bits, four VALID bits, 17 TAG
bits, and 16 bytes of DATA. Using four PID bits, 16
different processes can share a cache macro. The cache
macro has 2K lines.

Fig. 3 shows a block diagram of the cache macro. The
memory core is separated into two blocks containing
DATA part and TAG, VALID, and PID parts. The main
word-line buffer is placed between the DATA part and
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TABLE I
SYSTEM-LEVELFEATURES

Cache Macro
Cache size 32Kbyte (datdiistmction onified)

Confignrstion Direct mapped

Operation Sync+rOnOus
Address space 4G byte

Process ID 4bit (CAM cell)

VaHdbk lbit/word (selectively clearable)

Lme size 16byte

RIsc
#of instructions 46

Pipeline stages 4

#of registers 32(1 write port + 2 read port)

Load instruction 2 cycles

Stnre insrrnction 3cycles

Most of other inst’s lcycle

Branch inatmction Delayed jump

++~~
4 bits 4 bits 17 bits 32 ~ts x 4 ~Ords

(16 bytes)

Fig. 2. Cache configuration

other parts. This buffer isolates the capacitance of the
DATA main word line from the TAG main word line, thus
enhancing the speed of the TAG, VALID, and PID parts.

A HIT signal is generated by the readout data from
TAG, PID, and VALID parts. Hit signal generation is a
critical path in cache access, so that the DATA part is
allowed to be a little slower than the TAG part.

Fig. 4 shows the timing chart of this cache macro. The
cache macro operates synchronously and supports pipeline
addressing to reduce the cycle time. The write operation
takes two clocks in order to prevent a collision between the
read and write data.

Two-way or four-way set associative cache will be easily
organized by using the basic cells developed in this cache
macro to improve hit ratio.

IV. PIPELINED OPERATION

In this cache macro, pipeline operation of cache access
is proposed. Pipeline operation is widely used in logic
devices, because pipeline operation is a reliable method to
improve cycle time. However, pipeline operation has been
scarcely adopted in a cache memory or synchronous mem-
ory because it is difficult to divide cache access or memory
access into multiple pipeline stages.

Fig. 5(a) shows pipeline stages and delay factors of
cache access. Cache access delay consists of row decoding,
word-line driving, sensing, comparison between address
and TAG, and data output. Conventionally, synchronous
memory access starts from row decoding. In the pipelined
cache memory, delay time is allotted to two pipeline stages.
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Fig. 5. Pipeline operation of cache access. (a) Pipeline stages and delay
components of cache access. (b) Consecutive cache access flow.

The first stage is row address decoding and the second
stage is a sequence of word-line drive to data out. In the
fast SRAM, the delay from address input to word-line
drive is about a half of the total delay. Therefore, pipelined
row decoding is very effective in improving cycle time. The
cache access cycle starts from word-line drive, and row
decode is done in the previous cycle of cache access.

The sequence of cache access cycles is shown in Fig.

5(b). This figure shows that, using this pipeline operation,
the cache macro can achieve shorter a cycle time than the
cache access.

For this pipeline operation, a word-line slave latch is
required, as shown in Fig. 6 in comparison with the
conventional word-line select circuit. In the conventional
word-line select circuit, row decoding starts after the row
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Fig. 6. Word-line select circuit. (a) Conventional. (b) Word-line slave
latch.

address is latched. In the synchronc)us memory, the ad-
dress is set up before the clock assertion. Therefore, row
decoding is kept waiting until the clock assertion.

This word-line slave latch, as shown in Fig. 6(b), is the
key technique of the pipelined cache memory. The unique
feature of this circuit scheme is that the row decoder is
placed between the master and slave latches. Every word
line has a slave latch with a clocked CMOS inverter.
Therefore, a slave latch was designed to have the same
pitch as that of the memory cell. Master latches are in the
address buffers. Master and slave latches are transparent
latches and triggered by complementary clock signals.
These latches act as pipeline latches l~etween the memory

access stage and the previous pipeline stage, and a part of

the address decoding time is merged into the previous

pipeline cycle. The cache access is a critical path in the
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Fig. 7. Timing chart of word-line selection. The first cycle shows the
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than the row decoding time.
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CPU system, therefore, this delay improvement directly
enhances the system performance.

A timing chart of word-line selection is shown in Fig. 7.
There are two cases of word-line selection. The first case is
for an address setup time that is longer than row decoding
time, as shown in the left portion of this chart. The second
case is for an address setup time shorter than row decoding
time, as shown in the right portion of this chart. In the
first half of the cycle, address signals are latched by master
latches at the rising edge of the clock signal. Then slave
latches are transparent. In the second half of the cycle, row
decode signals are latched and word lines are locked by
slave latches at the falling edge of clock signal. Master
latches are transparent and address signals are transmitted
to the row decoder.

When address setup time is longer than row decoding
time, row decode finishes before clock assertion, and
word-line selection is controlled by the clock. In this case,
cache cycle time is independent of address setup time.
When the address setup time is shorter than row decoding
time, row decode signals become valid within the first half
of the cache access cycle, and then the word line is
selected. In this case cache cycle time depends on address
setup time. In both cases, the whole or a portion of row
decoding time is merged into the previous pipeline cycle.

Furthermore, the word-line slave latch does not require
any additional timing conditions compared with conven-
tional circuits. Therefore, we can use the word-line slave
latch without any special considerations. In other words,
the address generation circuit of the CPU has relaxed
constraints.

Fig. 8 shows the relation between address setup time,
HIT delay, and DATA delay. When address setup time is
longer than 2.3 ns, HIT and DATA delay are constant.

Senss Data out

WL Select Comp.

Conv. 4.5ns

tstiup. 4ns (Simulated)

Fig. 9. DATA delay comparison.
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Fig. 10. Double-word-line architecture. Single-port cell, dual-port cell,
and CAM cell are designed to have the same word-line pitch.

When address setup time is shorter than 2.3 ns, HIT and
DATA delay become larger as address setup time de-
creases. The turning point of 2.3-ns address setup time is
identical with row decoding time. In most applications,
address setup time is set to be more than 2.3 ns. Therefore,
row decoding time is fully eliminated from the cache
access cycle in most applications.

A clock-to-DATA delay comparison between the pipe-
lined cache memory and the conventional cache memory is
shown in Fig. 9. This comparison is done using SPICE
simulation. A 4-ns address setup time is assumed. Clock-
to-word-line delay decreases from 4.5 to 2.3 ns. This 49-
percent reduction is achieved by the word-line slave latch.
Clock-to-DATA delay also decreases from 13.9 to 11.7 ns,
which corresponds to a 16-percent reduction. The cache
access is a critical path in the CPU system. Therefore, this
delay improvement
mance.

v.

directly enhances the

COREARCHITECTURE

system perfor-

Fig. 10 shows the double-word-line architecture em-
ploy;d in this cache macro. Using this double-word-line
architecture, TAG, VALID, PID, and DATA parts are
combined into a single memory array. Conventionally,
DATA part and other parts have been separated into two
memory arrays. However, in a large-scale cache memory,
both memory arrays become large, so it is difficult to draw
the floor plan with limited Si resources.

Double-word-line architecture has been used in a high-
density standard static RAM [4] and an off-chip cache
memory [5], [6]. However, this double-word-line architec-
ture is different from the conventional one. In this cache
macro, single-port cell is used in the DATA and TAG
parts, a dual-port cell in the VALID part, and a CAM cell
in the PID part. To utilize a double-word-line architecture,
each cell was designed to have the same word-line pitch. A
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combination of memory arrays of different cells is effective
in improving silicon area efficiency.

Another advantage of the double-word-line architecture
is power savings. Power consumption is one of the most
serious limitations in memories with wide bus width, be-
cause a large number of bits are read out at a time. In the
conventional architecture, all memory cells connected to a
selected row are activated and consuming power. In this
architecture, a minimum number of cells are activated in
an operation by selecting only four section word lines
connected to a decoded row, so the power consumption is
minimized.

VI. CIRCUIT DESIGN

Several novel circuit technologies are employed in this
cache macro.

A new word-line selector to achieve high-speed core
operation is described in Section VI-A. A dual transfer
gate scheme is treated in Section VI-B, which dissolves
bump-down delay. A selective clear circuit to support
logical addressing is discussed in Section VI-C. Lastly, a
test circuit to measure internal signal delay is described.

A. Word-Line Selector

Fig. 11 shows the core circuitry in this cache macro. The
new word-line selector is shown in the right portion. This
new word-line selector consists of two CMOS inverters
and one section word-line shortening transistor. When the
word-line selector is selected, the inverters are activated
and drive the section word lines. When unselected, the
section word line is discharged through the NMOS FET of
the inverter or shortening transistor.

Conventionally, a CMOS NOR gate has been used in
high-density RAMs. In conventional word-line selectors,
serially connected PMOS FET’s with slightly increased size
are required for high-speed word-line drive and that in-
creases the select signal and main word-line capacitances.
This section word-line selector needs 2.5 transistors per
section word line, less than the four transistors of a con-
ventional section word-line selector. To keep the same
transition time of the word line, the size of PMOS FET’s
in the new word-line selector is about half that in the
conventional word-line selector. Therefore this circuit re-
duces the capacitances of the select line and main word
line by 25 and 40 percent, respectively. This contributes to
the speed-up of cache access by 10 percent.

B. Dual Transfer Gate

The dual transfer gate circuit is also shown in Fig. 11.
The dual transfer gate consists of a PMOS transfer gate
assigned for read operation, and an NMOS transfer gate
assigned for write operation. One transfer gate is activated
at a time. The bit line is precharged to the VCClevel by a
PMOS precharge circuit.

-$L&-++”
-L=/*
DL SS. ~E DL

Data Line Load

I Sense Amp. I

Fig. 11 Core circuitry,

Usually, an NMOS bit-line load and NMOS transfer
gate are used in standard SRAMS. In such a circuit,
bit-line overprecharge caused by bump-down of the supply
voltage causes access time delay [7]. Therefore, the bit-line
pull-down load is activated in a selected bit line. In the
cache memory, such a bit-line pull-down load cannot be
adopted. Since a large number of bits are read out at a
time, a bit-line pull-down load causes large power con-
sumption.

The PMOS transfer gate and bit-line ~, precharge are
free from the VCCbump-down problem because the bit-line
signal is transmitted to the sense amplifier even after the
VC, bump-down.

C. Selective Clear Circuil

Fig. 12 shows the selective clear technique. Selection is
done by discharging the MATCH line. When the” process”
is switched in the multi-task system, MATCH lines are
precharged, and the process ID comparison is done using
CAM cells. Then CLEAR is asserted. If the process ID
matches, MATCH lines maintain the precharge level, so
the clear port of the dual-port cell is activated, and the
corresponding VALID bits are selectively cleared. A flush
clear function is also available in this circuit by eliminating
the process ID comparison from the selective clear func-
tion.

A clear operation can be done independently of normal
cache operation, because a complete clear operation can be
executed without using the normal operation port. This is

useful for the logical address cache to achieve high-speed
process switching.

A current limit transistor is connected to the bit line of
the clear port for improving the reliability. If a large
number of VALID cells are cleared without this transistor,
a large peak current flows into the bit line of the clear
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port, which will cause the Al line to open from electromi-
gration.

This cache macro employs the polysilicon-load CAM
cell, because the polysilicon-load CAM cell is 40 percent
smaller than the pure CMOS CAM cell.

D. Test Circuit

For accurate evaluation of very-high-speed devices, on-
chip test circuits are useful rather than an external expen-
sive LSI tester. Moreover it is impossible for an external
tester to measure the internal signal delay, which is much
shorter than the interface delay between the device and the
tester.

Fig. 13 shows a test circuit to measure the internal HIT
and DATA delay. A latch is included in the PAD 1/0
buffer. When the strobe (STR) goes to ONE, the clocked

CMOS inverter becomes high impedance and the present

state of the bus is latched. By varying the STR timing, it is
possible to find the fastest successful timing, which is the
real internal output timing of the cache macro. The STR is
wired to all test circuits. The signal-to-signal delay is
measured as the difference of STR timing. The size of this

TABLE II
DEVICEFEATURES

Teclmology Double Al& double poly twin-well CMOS

Design rule 1.OW basic rule

MOSFRTS 0.8@ gate length

Cell size

SRAM cell 9.2pm x 13.8pnr
Dual-port cell 20.0KmX 13.8PJn

CAM Cefl 25.lpm X 13.811ra

Cache macro size 8.7mm x 8.7mm

CMp size 14.5mmX 10.8mm

Strobe to HIT 9ns (typical)

Strotx to DATA 12ns(typical)

Cycle freq. 80MHz (typical)

test circuit is 0.02 mm2, which is sufficiently small to
measure multiple internal signals.

VII. SI PROCESS TECHNOLOGY

The whole layout was done under the unified design
rules (UDR) [8]. The UDR is a common layout rule
scalable to multigenerations of logic LSI process technolo-
gies. Therefore, this cache macro and various types of
memory cells are available for a memory macro embedded
in the logic devices.

The test device was fabricated using a double-aluminum
and double-polysilicon twin-well CMOS technology. The
basic design rule of 1.0 pm, and 0.8-pm gate length MOS-
FET’s were used. Resistor-load memory cells were used for
single-port cells, dual-port cells, and CAM cells. Four
additional masks were added to the standard logic process
to make the resistor-load memory cells.

VIII. PERFORMANCE

Device-level features are listed in Table II. Single-port
cells, dual-port cells, and CAM cells were designed with
the same row pitch. Single-port cell size is slightly larger
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Fig. 14. Chip microphotograph. Chip size is 10.8 mm x 14.5 mm, and
cache macro size is 8.7 mm2.

Fig. 15. Measured internal waveforms.

than the standard SRAM cell with same design rule be-
cause of the compatibility with the unified design rules.

Fig. 14 shows a chip microphotograph of the test device.
An experimental RISC is implemented and interface cir-
cuits are placed between the cache macro and the RISC.
Chip size is 10.8 mm x 14.5 mm, and the cache macro size
is 8.7 mmx 8.7 mm.

Fig. 15 shows measured internal waveforms. Clock-to-
HIT delay is 9 ns. Data buffers are activated by the HIT
signal with 3-ns delay, so DATA is accessed in 12 ns. This
measurement demonstrates that this cache macro has the
capability of SO-MHZ operation.

IX. CONCLUSION

A 32-kbyte cache macro was realized using a l.O-pm
double-aluminum double-poly twin-well CMOS process
with O.S-pm MOSFET’S. Pipelined cache access was pro-
posed to realize a fast cycle time. Double-word-line archi-
tecture improved silicon area efficiency by combining dif-
ferent memory cells into an array. A 9-ns HIT delay was
achieved by several new circuit techniques including a new
section word-line selector and a dual transfer gate. The test
device was designed under the unified design rules and is
available in multigeneration process technology down to
0.8 pm.
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