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Fast Simulated Diffusion: An Optimization Algorithm
for Multiminimum Problems and Its Application to

MOSFET Model Parameter Extraction
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Abstract—A new algorithm, namely a fast simulated diffusion
(FSD), is proposed to solve a multiminimal optimization prob-
lem on multidimensional continuous space. The algorithm per-
forms a greedy search and a random search alternately and can
find the global minimum with a practical success rate. A new,
efficient hill-decending method employed as the greedy search
in the FSD is propesed. When the FSD is applied to a set of
standard test functions, it shows an order of magnitude faster
speed than the conventional simulated diffusion. Some of the
optimization problems encountered in system and VLSI designs
are classified into multioptimal problems. A MOSFET param-
eter extraction problem is one of them and the proposed FSD
is successfully applied to the problem with a deep submicron
MOSFET.

I. INTRODUCTION

OME of the VLSI design problems including transis-

tor sizing and model parameter extraction can be re-
garded as a minimization problem in multidimensional
continuous space with an object function which has plural
local minima. Well-established minimization procedures
for convex functions, for example, the Levenberg-Mar-
quardt method [1], can be easily trapped in one of the
local minima and thus cannot find a global minimizer. Re-
cently a method called simulated diffusion (SD) has been
proposed [2] for finding the global minimum of a multi-
minimal function on continuous space. The simulated dif-
fusion is conceived by the stimulus of simulated anneal-
ing (SA), which is for combinatorial optimization prob-
lems [3]. Although much effort has been made to
theoretically study the behavior of the SD [4], [5] and it
has been demonstrated theoretically that under certain
conditions the method will find the global minimizer with
a probability of unity, little is known about the practical
aspects of the SD as an optimization procedure. Although
the SD can find a global minimizer, it is very slow [2].

In this paper, a new optimization iethod, called fast
simulated diffusion (FSD), is proposed to provide a faster
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way of finding the global minimum. The new method is
successfully applied to MOSFET parameter extraction
problems in the deep submicron regime.

In Section II, the basic idea of the conventional SD is
described. In Section III, the algorithm of the fast SD is
presented, and the advantage of the fast SD over the con-
ventional SD is clarified in Section IV. Section V is ded-
icated to a discussion on the application of the proposed
fast SD method to the practical VLSI design problems,
namely a MOSFET model parameter extraction problem
for a circuit simulator. The results are summarized in Sec-
tion VI.

II. CoNVENTIONAL SIMULATED DiFrusioN (CSD)

First, the basic idea of conventional simulated diffusion
is described. Essentially, SD makes use of the physical
fact that a particle placed in a given potential and with
Brownian motion is diffused into the global minimum of
the given potential profile. The following is a more math-
ematical formulation of the process. A differential equa-
tion which describes a diffusion process of a particle with
Brownian motion is given as

dx = — Vf(x) dt + N2T dw 1)

where ¢ is time, x is the space coordinate which indicates
the location where the particle is, f(x) is a potential func-
tion in which the particle is put, V is a gradient operation,
dw is Gaussian random noise, and T is temperature. The
first term on the right side corresponds to the drift com-
ponent of the movement and the second term signifies the
Brownian movement. When the temperature is high, the
second teri dominates and the movement of the particle
is just stochastic. On the other hand, when the tempera-
ture becomes low, the first term dominates and the pro-
cess approaches pure hill descent. The second term is es-
sential to get out of the local minimum and the first term
gives the tendency to minimize the function.

It has been shown [4] that with a proper cooling sched-
ule, the probability distribution of x, P(x), approaches

P(x) < exp {—f(x)/T} @

as ¢ goes infinity. This means that the limit distribution is
independent of the initial value and is peaked around the
global minimizers of f (x). This in turn means that if dx is
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integrated over a long period of time, x tends to converge

to a global minimum of the function f (x). This is the prin-

ciple of conventional simulated diffusion. Aluffi-Pentini

et al. [2] numerically integrated (1) to obtain the mini-

mizer from this first principle. However, the numerical
. process turned out to be slow.

If there are constraints in the original minimization
problem, it is possible to introduce penalization functions
and make it a minimization problem without constraints
[6]. Consequently, SD can be applied not only to uncon-
strained minimization problems but also to optimization
problems with constraints.

III. FAST SIMULATED DIFFUSION

In this work, instead of directly integrating (1), two
basic modifications are made, One is the introduction of
an accept/nonaccept function of a Boltzman distribution
type, which is commonly used in simulated annealing. If
the next point, x,., (= x + dx) gives a smaller function
value than the current x, take x,.,,. On the other hand, if
Xnext 8ives a larger function value than the current x, gen-
erate a random number R in [0, 1] and calculate P = exp
[— {f(x +dx) = F()}/T). If R < P, then accept Xpex;
otherwise discard the x,,,, and regenerate x,,,. The higher
the function value becomes in the next move, the less
probable it becomes to accept the move. This point selec-
tion rule was first introduced in [13} and was shown to be
effective in simulated annealing in [2].

The introduction of this Boltzman accept/nonaccept
function into the simulated diffusion algorithm can be val-
idated by (2), which is the Boltzmann distribution itself
and it is expected to help establish the probability distri-
bution of (2) faster than simply integrating (1). In prac-
tice, the use of this accept/nonaccept function prunes very
““stupid’’ moves that would otherwise be made and con-
sequently accelerates the convergence.

The other modification concerns the generation of the
next move. Instead of adding the greedy hill-descending
part (the first term of (1)) and the random perturbation
part (the second term of (1)), the generation of x based on
a greedy method and a random method is carried out al-
ternately. That is, dx is first calculated by —~Vf(x) dr and
is then calculated as V2T dw. By generating the next move
by the gradient method and the random method alter-
nately, it is possible to achieve hill descent even if the
temperature is relatively high. In the relatively high tem-
perature range, the random term happens to generate in-
effective moves and it is probable that no improvements
of f(x) will be observed if the two terms are added to-
gether as in the CSD. This is because the hill-descending
part can be hidden by the dominating random noise and
all moves are possibly rejected. In the above description,
the term greedy means that the method rejects any un-
profitable move, although the drawback is temporary and
in a long run the move is profitable.

Several considerations other than the above-mentioned
two major modifications make the method more efficient.

First, since it is expensive to ¢
Vf (x) if the space has large dima U
is used instead, where r is a unit vector of a randomly
picked axis. This is because the: €xpected direction of
<Vf(x) - r > r approaches Vf(x) in the long run [2].
Second, since it is difficult to chovae a good value of dt,
a new hill-descending method is proposed and used. The
choice of df is critical because if it is too small, the im-
provement of the solution is small, but if it is too big,
—Vf(x) dt does not always give an improvement. The
proposed method is described in Fig. 1. First, pick a ran-
dom axis direction. If the function is concave at the point
along the picked axis, quadratic fitting is carried out and
the minimum x in that direction is guessed and adopted as
Xaext- 1f the function is convex, choose a small dx first and
double the dx until f(x + dx) fails to decrease from f).
The doubling process is confined up to a certain number
of times (three in the following examples). It is not an
objective of this new hill-descending method to give the
exact minimum in that direction but rather to provide an
inexpensive yet effective way of improving the solution,
since there is always a possibility that the random search
can give rise to a big jump, in which case the previous
hill-descending becomes wasteful. This method is re-
garded as an inexpensive adaptive method for determining
a good value of dr. One may argue that more expensive,
but efficient, algorithm could be employed near the global
minimum. However, in practice it is difficult to know if
the current point is near the global minimum and a big
jump may take place after the expensive improving steps
and all the efforts become vain.

A rough sketch of the FSD algorithm is shown in Fig.
2 and a detailed description of the FSD method is shown
in Fig. 3. In the first several external loops (around ten
loops), hill descending is not taken and only random
search is carried out because big jumps are accepted in
the high-temperature stage and hill descending is not ef-
fective at all.

The initialization scheme and the temperature update
algorithms in [7] are adopted. That is, the initial temper-
ature, Ti,, is determined by statistics gathered over ran-
domly selected N, points, as shown in Fig. 3. The
adopted temperature update algorithm (cooling schedule)
is basically a geometric decrease. The theory of SD sug-
gests that the cooling schedule should be much slower than
the geometric decrease to guarantee that the global mini-
mum will be reached even for ill-conditioned functions
[11]. However, for practical problems, geometric cooling
works well [7], [12]. Although T, and N, affect the
performance of the FSD, they are not as critical as the
cooling schedule.

The initial distribution of dw is chosen so that almost
all the feasible space is covered by the random search at
the initial stage. Such a distribution can be determined
when the feasible region of x is given as a supercube,
[Xmin> Xmax]. In practical problems, this feasible region is
known in advance (see Section V) or is set sufficiently
large. If the randomly generated x falls out of the feasible
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Fig. 1. Proposed hill-descending method using f' and f " information.
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Fig. 2. Rough sketch of the fast simulated diffusion algorithm.

region, it is regenerated. At the last stage of FSD, when
the object function shows little change, the Last_Gasp se-
quence is taken, whereby the temperature is increased a
little and then decreased to freeze. The details are shown
in Fig. 3.

In Fig. 3, a multiplier, S, controls the random search
space volume. § should be shrunk in proportion to VT as
T is lowered according to the first principle of SD, but in
practice § can be reduced faster and is proportional to 7,
(n=0.5 ~ 1.0).

IV. ComparIsON BETWEEN FSD anp CSD

Table I shows a comparison between FSD and CSD
when they are applied to a set of standard test functions
given in [2]. On the average, FSD is about an order of
magnitude faster than CSD. Let us define reachability as
the probability of finding the global minimum in a finite
period of time using the given algotithm. The number of
successful trials in ten trials in Table I can be used as an
index of reachability. Improvement in efficiency or speed
might be obtained at the risk of degrading the reachabil-
ity. Judging from Table I, the reachability of FSD is in
the practical range.

When the first term in (1) is neglected, the method be-
comes similar to SA. This SA-like method is thought to
be better than the mere extension of SA to a continuous
space [8], since the random search space is decreased by
a factor of V2T as the temperature is lowered. FSD is
faster than this SA-like method, as shown Table II, be-
cause fewer ‘‘stupid’’ moves are generated. In the sto-
chastic search method, it is important to prune the search
space, and FSD provides a way of pruning the search
space effectively.

In Table II, the results of using a Lorentzian distribu-
tion [9] instead of a Gaussian distribution are also shown.
Further improvement in both speed and reachability is ob-
served. Since the Lorentzian distribution has a longer tail
than the Gaussian distribution, the possibility of a large
jump is rather high with the Lorentzian distribution even
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Algorithm of Fast Simulated Diffsion

main {
T = Tinit = (x * (standard deviation of f(X) over randomly selected Ninit points));
// Set initial temperature by using huristics. x =0.2, Ninit=200
S = Sinit; // Set initial S to Sinit
Xinit = (Xinit_Given_by_User or one of those randomely selected Ninit points
whichever gives the minimum value of f);

Xopt = X = Xinit; // Set initial X to the best X known
do { // External loop with varying T
iINT =0;
while (a certain times (ex. 15~25*dimension)) {/ Internal loop with constant T
iINT ++;
Generate_X(); // Generate new X by simulated diffusion
Af= f(Xnew) - f(X);
If (Af < 0){ // If cost decreases,
X = Xnew; // adopt the Xnew.
If ( £(X) < f(Xopt) } { Xopt = X'} /# Save best X.
} else { // Even if cost increases,
P = exp(-Af / T); // adopt the Xnew
R = random number in [0,1};  / according to

if (R < P} {X = Xnew} // Boltzman distribution.

}

if ( f(X) > f(Xopt) ) { X = Xopt }

if (cost is not improved considerably) {
iLast_Gasp ++;

/ Resume the best X.

// If cost is not improved considerably,

} else { // take Last_Gasp loop,
iLast_Gasp =0; // where T is increased a little
} // and then decreased to freeze.
Update_T();
Update_S(); #8=Sinit * (T/Tinit)3 ; a = 0.5~1(ex. a=0.75)

} until ((iLast_Gasp > il.ast_Gasp_Max) and (T / Tinit < T_Ratio_Min) )
// until Last_Gasp loop is taken long enough and T gets low enough.
solution = Xopt;

Generate_X() {
If (iINT < mINT) {
gradient_Flag = 0;
} else {
gradient_Flag = 1 - gradient_Flag;

// generate new X

}
if (gradient_Flag == 1) {
Randomly select single variable Xi and move only in this axis.
Generate Xnew with gradient information according to f* and f' values.
} else {
Xnew = X + S * (n-th dimensional Gaussian or Lorentzian distribution)

}

Update_T() {

If {iLast_Gasp = 0) {
T_Factor =exp(-A T/ o) // ex. A=0.7, o=standard dev. of accepted f(x)
1f (TTFfa:ctor < T_Factor_Min) { T_Factor = T_Factor_Min (=0.5)}

T*= actor

// update temperature

}
if( 1<iLast_Gasp <n2)

{T*=T_Factor2 (T_Factor2 > 1, ex. 1.3) } # ex. n2=4
If (n2 < iLast_Gasp)

{ T*=T_Factor1 (T_Factor1 < 1, ex. 0.75) }
}

Fig. 3. Detailed algorithm of fast simulated diffusion.

at low temperature and it helps to get out of the local min-
ima at the final stage.

and the weight function is optional. The SPICE LEVEL3
MOS model is used as a MOS model in this section as an
example, although the method is not restricted to specific
device models. The model parameters, p, that minimize
f(p) are considered to form a good extracted parameter
set and can be used for the circuit simulation afterwards.
With the conventional extraction program, the extracted
parameters give the local minimum of f(p) which is the

V. ArpLicaTiON TO MOSFET MODEL PARAMETER
EXTRACTION

The model parameter extraction problem is to minimize
the object function

f(p) = > weight (bias condition) closest to the given initial parameter set {1]. However, in
various bias conditions practice, it is difficult and often impossible to guess the
/Iy measued — Ip. mocel(P)/ 3) initial parameter set correctly. FSD does not require an

initial value. All information needed beforehand is on the

with the model parameters, p, as variables. In the above
expression, Ip denotes the drain current of a MOSFET

bounds, ppi, and pn.., for each parameter. This is rather
easy because it is known that, for example, the parameter
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TABLE 1
COMPARISON OF CONVENTIONAL SD AND FAST SD

problem description CSD (*1) Fast Simulated ll()iffusion (this
work)
problem dimen- # of local] NF1:#0of | NF2:# of success NF2/NF1
#("1,2) sion minima | function function  rate in 10 (%)
evaluation evalua)tion trials (*4)
*3
1 1 3 7168, 3644 1.0 50.8
2 1 19 77699 2586 1.0 33
3 2 760 241215 3067 1.0 1.3
4 2 760 76894 2968 0.8 39
5 2 760 183813 2734 0.7 1.5
6 2 6 10822 4573 1.0 42.3
7 2 25 159549 3408 1.0 2.1
8 3 125 72851 3572 1.0 4.9
9 4 625 49690 3818 1.0 77
10 5 165 72226 5246 1.0 7.3
11 8 1e8 136061 9819 0.9 7.2
12 10 te10 98985 12206 1.0 12.3
13 2 900 23770 4081 1.0 17.2
14 3 2.7e4 66010 4036 1.0 6.1
15 4 8.1e5 122166 4473 1.0 3.7
16 5 7.6e5 66365 4588 1.0 6.9
17 6 1.1e7 98974 5559 1.0 5.6
18 7 1.7e8 109886 6509 0.9 5.9
average 3.8 5.7e8 93009 4828 0.96 5.2
*1) See [2].

*2) Expressions for problems 4 and 5 in [2] seem to contain errors and
so have been modified.

*3) Average over ten trials.

*4) This is the rate of having reached the global minimum in ten trials.
This information is not contained in [2], which gives only “‘yes’’ or *‘no”
in one trial as the reachability information.

TABLE 11
Two MODIFIED VERSIONS OF FAST SIMULATED DIFFUSION

Simulated Annealing-like Simulated Diffusion with
random search Lorentzian Distribution
problem NF1:#of NF3: # of success NF3/NF1 NF4: # of SuCCess NF4/NF{
# function function rate in 10 (%) function rate in 10 (%)
evaluation [ evaluation trials evaluation trials
(Table | *4) ! ‘able | '4!

1 7168 3111 1.0 43.4 2939 1.0 41.0
2 77699 3060 1.0 3.9 2387 1.0 3.1
3 241215 4131 0.7 1.7 2877 1.0 1.2
4 76894 5867 0.7 7.8 3170 0.8 4.1
5 183819 5831 0.7 3.2 2678 0.7 1.5
6 10822 5151 0.9 47.6 3609 1.0 33.4
7 159549 7701 0.9 4.8 3023 1.0 1.9
8 72851 11322 1.0 15.5 3232 1.0 44
9 49690 11475 1.0 23.1 3401 1.0 6.8
10 72226 20053 1.0 27.8 4108 1.0 5.7
1 136061 28689 0.9 211 7716 1.0 57
12 98985 33986 1.0 34.3 9856 1.0 10.0
13 23770 7378 1.0 31.0 3294 1.0 13.9
14 66010 10761 1.0 16.3 3446 1.0 5.2
15 122166 11424 1.0 9.4 4051 1.0 33
16 66365 14790 1.0 22,3 4140 1.0 6.2
17 98974 19730 1.0 19.9 4903 1.0 5.0
18 109886 22962 1.0 20. 6295 1.0 5.7
average 93008 12640 0.93 13.6 4174 0.97 4.5

KAPPA is in the range of 0 ~ 2. The values used for the
bounds are tabulated in Table III. The same set of bounds
is used to extract the 0.25 um and 1 pm MOSFET param-
eters.

In order to further increase the efficiency in this partic-
ular problem of parameter extraction, the search is carried
out in the logarithmic space for NSUB, VMAX, and NSS.
This measure is taken to achieve a balanced search over
a space because, for example, VMAX is in the range of
le4 ~ 1e8 and the increase from le4 to 1.1e4 tends to
have an effect on Ip, moder similar to that of an increase
from 1 €7 to 1.1¢7. For other parameters, the search is
made on a linear scale.

TABLE III
MOSFET MODEL PARAMETER EXTRACTION RESULTS
parameter Pmin Pmax  ©xtracted extracted
name params for params for
1um MOS  0.25um MOS
VTO 0 1.5 0.769 0.743
uo 10 1000 900 406
NSUB 1e16 1e20 1.80e17 5.97e18
GAMMA 0.2 1.5 0.928 0.477
ETA 0 2 0.0293 0.00754
THETA 0 2 0.996 0.775
KAPPA 0 2 0.382 0.299
VMAX 1ed 1e8 5.26e7 1.81e5
XJ 1e-8 3e-8 2e-7(fixed) 2.02e-8
TOX - - 2e-8(fixed) 5e-9(fixed)
NFS - - O(fixed) 0(fixed)
LD - - 0.1(fixed) O(fixed)
w - - 10e-6(fixed) 4e-6(fixed)
L - - 1.0e-6(fixed) 0.25e-6(fixed)
# of func. eval. - - 4258 3114
time (min.sMIPS) - - ~18 ~13
1e10
- o o o ° o Random gen.
E ° O Rejected
3
E. 1e9 ° ¢ Random gen.
] L Accepted
[~
E o Gradient gen.
p le8 Rejected
E s Gradient gen.
E Accepted
g te7
3
E
X te6 |
=
>
1e5
250 350 450

U0 (mobility : cm2/Vs)

Fig. 4. Multiple-minimal nature of MOS model parameter extraction
problem and generated x points.

The multiminimal nature of the object function is shown
in Fig. 4 together with the generated x points with FSD.
An example of the fitted drain current is shown in Fig. 5
for a 1 um MOSFET. Fig. 6 shows another example of
parameter extraction with a 0.25 um channel length
MOSFET [10]. Good agreement is observed even down
to the deep submicron region. This indicates the effec-
tiveness of the LEVEL 3 MOS model in the submicrom-
eter region if the extracted model parameter set is used
only for a narrow range of channel lengths. Usually the
shortest channel length is used for almost all the MOS-
FET’s in a VLSI and two or three sets of parameters are
enough in designing a whole VLSI. Separate parameter
sets are also required for a very narrow width device, a
shallow Vyy device, and an i-type (intrinsic Vqy) device
if they are employed. Even though it is good practice to
use model parameters near the condition where they are
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Fig. 5. Measured Vjs-Ij, data (dots) for 1 pm MOSFET with SPICE
LEVEL3 MOS model calculation (lines) fitted to them.
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Fig. 6. Measured Vps—1Ip, data (dots) for 0.25 um MOSFET with SPICE
LEVEL3 MOS model calculation (lines) fitted to them.

extracted, more advanced models, such as the BSIM, can
cover a wider range of channel-length and threshold-volt-
age variations with a single parameter set.

VI. CONCLUSIONS

Fast simulated diffusion is proposed as a fast method
for finding the global minimum of a multiminimal func-
tion on multidimensional continuous space. The tech-
nique is about an order of magnitude faster than conven-
tional simulated diffusion when applied to a set of standard
test functions. Fast simulated diffusion is successfully ap-
plied to MOSFET model parameter extraction in the deep
submicron region. The method is believed to be applica-
ble to other optimization problems encountered in system
and VLSI designs [14]. The salient feature of the FSD is
that it carries out an inexpensive solution refinement pro-

233

cess after each stochastic search. In this sense, the method
could be applicable to noncontinuous-space problems.
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