This two-dimensional 8x8 discrete cosine transform (DCT) core processor for portable multimedia equipment with HDTV-resolution in a 0.3µm CMOS triple-well double-metal technology operates at 150MHz from a 0.9V power supply and consumes 10mW, only 2% power dissipation of a previous 3.3V DCT [1]. Circuit techniques for dynamically varying threshold voltage reduce active power dissipation with negligible overhead in speed, standby power and chip area.

Lowering both of supply voltage, V_{DD}, and threshold voltage, V_{th}, enables high-speed low-power operation, but raises two problems: 1) degradation of worst case speed due to V_{th} fluctuation in low V_{DD} [2], 2) increase in standby power dissipation in low V_{th} [3]. The variable
threshold-voltage scheme (VT scheme) in Figure 1 solves these two problems by controlling substrate bias, VBB, with substrate-bias feed-back control circuits. \(V_{th} \) is controlled at 0.1V in the active mode and 0.5V in the standby mode. \(V_{BB} \) of -0.5V is applied in the active mode and -3.3V in the standby mode.

Figure 2 depicts the VT scheme block diagram. It consists of leakage current monitors (LCMs), self substrate bias (SSB) circuits, and a substrate charge injector (SCI) circuit. In the active mode, the SSB controls \(V_{BB} \) to compensate \(V_{th} \) fluctuation. In standby mode, the SSB applies deeper \(V_{BB} \) to increase \(V_{th} \) and cut off leakage. The SCI is used for fast transition from standby to active mode. Although other parts of the chip work on 0.9V \(V_{DD} \), the VT circuit itself works on 3.3V \(V_{DD} \) that usually is available on a chip for standard interfaces with other chips.

As illustrated in Figure 3, the VT scheme uses four voltage levels for the \(V_{BB} \) control; \(V_{active(+)} = -0.3V \), \(V_{active} = -0.5V \), \(V_{active(-)} = -0.7V \), and \(V_{standby} = -3.3V \). After a power-on, the SSB begins to draw 100\(\mu \)A from the substrate to lower \(V_{BB} \) using a 50MHz ring oscillator. When \(V_{BB} \) goes lower than \(V_{active(+)} \), the SSB drops to 5MHz and draws 10\(\mu \)A to control \(V_{BB} \) more precisely. The SSB stops when \(V_{BB} \) drops below \(V_{active} \). \(V_{BB} \), however, rises gradually due to device leakage current through MOS
transistors and junctions, and reaches V_{active} to activate the SSB again. In this way, V_{BB} is controlled at V_{active}. When “SLEEP” is asserted (“1”) in the standby mode, the SCI is disabled and the SSB is activated. The SSB begins to draw 100µA from a substrate until V_{BB} reaches V_{standby}. When SLEEP=0, the SSB is disabled and the SCI is activated. The SCI injects 30mA current into the substrate until V_{BB} reaches $V_{\text{active(-)}}$. Active-to-standby mode transition takes about 100µs, and a standby-to-active, 0.1µs.

Figure 4 depicts a circuit schematic of the leakage current monitor (LCM) a key to the accurate control in the VT scheme. Transistors M1 and M2 in a bias generator operate in the subthreshold region. When an MOS transistor is in subthreshold its drain current is:

$$I_{DS} = I_0/W_0 \cdot W \cdot 10^{(V_{GS} - V_T)/S} \quad (1)$$

where S is the subthreshold swing, V_T is threshold voltage, I_0/W_0 is the current density to define V_T, and W is the channel width. By applying (1), the output voltage of the bias generator, V_b, is:

$$V_b = S \cdot \log \left(\frac{W_2}{W_1}\right) \quad (2)$$

where W_1 and W_2 is the channel width of M1 and M2, respectively. Leakage current of DCT, $I_{\text{leak.DCT}}$, and monitored leakage current, $I_{\text{leak.LCM}}$, can be calculated from (1), and a current magnification factor of LCM, X_{LCM}, can be expressed as

$$X_{\text{LCM}} = \frac{I_{\text{leak.LCM}}}{I_{\text{leak.DCT}}} = \left(\frac{W_2}{W_1}\right) \cdot \left(\frac{W_{\text{LCM}}}{W_{\text{DCT}}}\right) \quad (3)$$
where W_{DCT} is the total channel width of the DCT and W_{LCM} is the channel width of M4. This implies that X_{LCM} is determined only by the transistor size ratio and independent of the power supply voltage, temperature, and process fluctuation. Figure 5 shows simulated variation of X_{LCM} due to circuit condition changes and process fluctuation. The variation is within 15%, resulting in less than 1% error in V_{th} control. The power overhead of the monitor circuit is about 0.1% and 10% of the total power dissipation in the active and the standby mode, respectively. Transistor M3 isolates the Nout node from the N1 node and the parasitic capacitance of M4. This keeps the signal swing on N1 small to reduce delay and improve dynamic V_{th} controllability.

Area penalty induced by the VT scheme is negligible. Since the substrate current generation due to impact ionization is four orders of magnitude smaller in 0.9V V_{DD} than in 3.3V V_{DD}, the pumping current in the SSB is several per cent of that in DRAMs. Not many substrate contacts are needed. To reduce substrate noise induced by drain-substrate capacitive coupling, most of the substrate diffusions in the DCT macro are replaced by source diffusions and the rest are used for the substrate-bias separation, which imposes 0.5% area penalty.
In the VT scheme, no transistor sees high-voltage stress of gate oxide and junctions. Transistors are optimized for use at 3.3V. The gate oxide thickness is 8nm. The maximum voltage that assures reliability of the gate oxide is $V_{DD}+10\%$, or 3.6V. The substrate charge injector (SCI) in Figure 6 receives a control signal that swings between V_{DD} and GND at node N1 to drive substrate from $V_{standby}$ to GND. In standby-to-active transition, $V_{DD} + |V_{standby}|$ is applied between N1 and N2. $|V_{GS}|$ and $|V_{GD}|$ of M1 and M2, however, never exceeds the larger of V_{DD} and $|V_{standby}|$. All other transistors in the VT circuits and the DCT macro receive ($V_{DD} - V_{th}$) on their gate oxide when in depletion and inversion mode, and less than $|V_{standby}|$ in the accumulation mode. $V_{standby}$ should be limited to -V_{DD}. $V_{standby}$ of -V_{DD}, however, can shift V_{th} enough to reduce leakage current in standby by four orders of magnitude below that in active mode. The body effect coefficient, γ, can be adjusted independently to V_{th} in any device generations by controlling the doping concentration density in the channel-substrate depletion layer.

A chip micrograph appears in Figure 7. The VT circuits occupy 0.58x0.74mm2. The increase in cost and turn-around time by introducing triple-well process is less than 5\%.
Acknowledgments:

The authors acknowledge encouragement of A. Kanuma, J. Iwamura, K. Maeguchi, O. Ozawa, and Y. Unno.

References:

Figure 1: Variable threshold-voltage (VT) scheme.
A 0.9V 150MHz 10mW 4mm² 2-D Discrete...
Tadahiro Kuroda, et al.

Figure 2: VT block diagram.
Figure 3: Substrate-bias control in VT.
Figure 4: Leakage current monitor (LCM).
Figure 5: Current magnification factor of LCM, X_{LCM} dependence on circuit and process deviations.
Figure 6: Substrate charge injector (SCI).
Figure 7: Chip micrograph.
<table>
<thead>
<tr>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996 IEEE International Solid-State Circuits Conference</td>
</tr>
</tbody>
</table>