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Abstract

Simple yet useful analytical expressions for
peak noise amplimde for capacitively coupled two-,
three- and infinite interconnections are derived
assuming bus lines and other signal lines in
VLST's. The calculated results using the derived
formulas are compared with SPICE simwulation
results to demonstrate the validity of the analytical
expressions. Two modes have been stodied; the
case where adjacent lines are driven from the
opposite direction and the case where adjacent
lines are driven from the same direction. These
cases cover most of the typical simations in VLSI
designs and include worst cases in terms of noise

In deep submicron VLSI designs. where
coupling capacitance is comparable to grounding
capacitance, the noise induced by the coupling is
shown to go up to 40% of the signal swing.
This high noise may canse malfunction and timing
problems especially in dynamic circuits but even in
static circuits, the noise may generate unexpected
glitches which may give rise to timing and power
problems. The derived expressions are useful in
estimating the noise in the early stage of designs
and give insight to coupling related issues.
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Introduction

In deep submicron designs, interconnection
related issues become more and more important in
estimating timing behavior of VLSI's [1].

Several attempts have been made to analytically
treat the crosstalk in capacitively coupled
interconnections.  However, the results are
limited o two-line systems and the case
considered in the previous publications are limnited
to the case where adjacent lines are driven from the
same direction. This paper extends the analysis
and covers more general cases. ‘The resultant
formulas are more precise than the previously

Notations

Notations used in this paper are as follows.
x: x-coordinate along the line
t: tme
r: resistance per unit line length
c: capacmmeperunnlme]engm

" This work is supported by a grant from Toshiba
Corporation.
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n

: couplingcapacitahoepcrunit]inelengﬂl |
line length

p—
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total line resistance (=rl)

total line capacitance (=cl)

:-total coupling capacitance (=cJ)

: equivalent resistance of dnver MOSFET

. equivalent capacitance of receiver MOSFET

: =CJ/C
=C/C
s : Laplace variable

s pporpOz

v, v(x,1): voltage of line i (i=1,2) in t domain

V, V(x,s) : voltage of line i (i=1,2) in s domain
K,: residue corresponding to the minimum pole
¢, - minimum pole

v, : peak noise voltage

-]

t: time to give the noise peak
p: =l+n+l)m
E: step voitage of the driving point

n: number of adjacent lines (n=1 for two-line
system, n=2 for three-line system and n=1
for infinite-line systems, see text)

n,: =n+l
Basic Equations
The basic equations which governs a

capacitance-coupled two-lme system (Fig. 1) are
written as follows. "
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J v, =r(c, +¢ ) lope, =%

| * )
oty | Bv v,

Sx-——r,(cz-i-c )——-—r,cc >

, where r, and ¢ are unit length resistance and
capacitince of line i (=1,2). Since in- bus
structures and other wiring structures lines have
the same unit length resistance and capacitance, we

~ assume r,=1,=T and ¢,;=¢,=C.

When three-line system (Fig. 2) is considered,

the following equations hold.
v, v, 0V
2= 2L 9 —2
™ r(c+2c,) e 1c, = "
in__ r{c+c, )gl-—rc ,
= ! ey
x—F"
—ANWWWA—V4(x:8)
(] I cci
R
Va(X,t)
c
Fig. 1  Capacitively coupled two distributed RC
lines.
x
v,(x,t)
vf(x.t)
v x,t)

Fig. 2 Capmnvdymuplzdﬁnec(hstributed
RC lines.

On the other hand, if infinite nombes of lines are
placed in parallel where the same boundary
coqdiﬁonsmappliedtoevuytwolimsasinﬁg.
3, the following equations hold.
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Fig. 3 Capacitively coupled infmite distributed
RC lines.

All of the above-mentioned three equation sets
can be represented by the following one set of

equations.

azv' = r(c+nc, )iv——nrc Cad

e ot 'y @
gz_vizr(c.{-c )E__ a_v.'.

ax2 [ at [ a

In the above Eq. (4), thefoﬂowmgvahm
should be set to n and ¢, for each case.

Two-line case: n=1, c=c,

Three-line case: n=2, c=c,

Infinite number of lines:  n=1, ¢=2c,

Eq. (4) can be simplified, if the following
substitutions are made.

c Ié—m, —Z-Y-—)v av—-n‘r
¢ ox’ ot
{ vy=(1+mv, -mv,
v =1+ 1V, - 1Y,
are the resultant equations after the substimtion.
With a linear transformation, we have

| { ¥, =¥,)" =L+ @+ DM, —¥,)

(v, +0av,)" =¥, +0v,
By the Laplace transformation, the following
equations can be derived.
(VI“Vz)”=(1+(n+1)ﬂ)S(V|-Vz)
(_Vl +aV,)" =s(V, +nV;)
The solutions of the above equations are
:::q:;rmsedasfokwswithtl:.n::imroclut:tionof‘v(l

and ,.
V, +aV, = A'e™ +B'e™™
V,-V, =Ce"" +D'e™™

Y =45, Y, =,} l+(n+l)‘l‘|)s =JE

 where A', B', C and D' are integration
constants.

(n+1)V, = A’e™ +B'e ™ +nC'e™ +nD’e™
(@+1)V, = A’e™ +Be ™ —Ce’™™ -De™

Then, the following are the general solutions to Eq.

(4) in s-domain.

V, = Ae™ +Be ™" +nCe™" +nDe™” (S)'
VZ = Ac'h! +Be"’hl - Ceu: _m—q:;

A, B, C and D are to be obtained from boundary
conditions. :
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Opposite Direction Drive

In this section, the mode where adjacent lines
amdnvcnfromtheo;:pos;tedxrecuonlshmdled.
'Ihesm:anonlsdepl.cwdmf-‘lg4 For this mode,
analyucalexpressmnsmmsuqtgobevay
complicated if R, and C, are not equal to zero.
The case where R=C=0, however, gives the
worstcasescenarioinwrmsdfﬂmnoisemmﬁmde

becanse the capacitance coupling effect is mitigated

if R and C, are fmite. Consequently, the
R=C=0 case is treated here.
The boundary conditions for this case are as

follows (Fig. 4).

Vi(x=0)=0

V(x=1)=0

V,(x=0)=E/s

Vix=)=0

x=0 x=l

R R
-,(o)ﬂrwiaw
C=0L e

R
vac#zﬁ)—%ﬂm
ot E c &G0

lines are driven fnbm the
dimcnon(R1=Q=0)

Fig. 4 Adjacent
opposite

Writing these conditi ions using Eq. (5) yields

Ay, ~By, —nCy, +Dy, =

Ae"‘ + Be-*lnl _ nce‘!:l - nDe-‘hl =0
A+B+C+D=E/s

A.ch"l'l' - B.Yle-?il + C-Y;e'!zl - Dyze—’f Ly |
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'Thsabove]inmequaﬁonscanbesolved in
terms of A, B, Cand D. Then A, B, Cand D are
substinxted back in Eq. (5) and the closed-form
expression for V,(x,s) is obtained. Although the
dcziv'edexpr&sion for V,(x,s) is very complicated,
the peak noise amplimde, v,, can be calculated
using the following initial value theorem of
Laplace transform.

Y _ v,(x= 0;_.,_0)=hmsV(x = 0,5)

E E E

The obtained expression for the peak noise
amplitode is simple as follows. The formula is
exact. Special case expressions for two-, three-
and infinite line systems are also shown.

.L n.,{1+(n+1)11 n
E n-,’1+(n+l)11+1

v 1+2C_/C-1 :
two — line)

= (
E :]l+2C¢IC+1
vP

()
133C./C-2 |
1+3C /C+1
Yo _ 1+4C_/C -1
| E 1+4C_/C+1

Ifﬂ:ccouplmgcapacimnoe,cc,'mequaltome
grounding capacitance, C, which can happen in
deep submicron designs, v,lEformo—.ﬁ:ree-and
infinite line system are 0.27, 0.40 and 0.38

(three — line)

|

(inf inite lines)

swing, which may in ton canse malfanction and
bymeSPICE[G]si:mlaﬁqmmsuhsassemhFig.
5. The SPICE simulation is camicd out by using
10 sections of lumped RC blocks. '
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Normallzed Voltage: V/E

() o5 1 15 2
Normalized Time: YRC

SPICE simulation results for the case
whexeadjacenthnesarednvcnﬁ'omﬂw
opposite direction (three lines).

Fig. 5

Although the expressions for V, and V; are very
complicated, the moments [7-8] of the waveforms
can be derived as follows. The Elmore delay of
the noise is the coefficient of s in V, and the
Elmore delay of the perturbed waveform of V, is
the coefficient of s in V.

[V,
—é*- =4nRC,s

— % aRC{(5n +3)C +8C)s* +O(s%)

XE— =1~3R(C.+C)s

For this mode where the adjacent line is driven
from the opposite direction, analytical treatment is
difficult if the equivalent resistance of driver
MOSFET"s and the input capacitance of the next
gate are to be considered, that is, Ry and C; are not
equal to zero. This case, however, gives the
worst case scenario in terms of the noise amplitade
becanse the capacitance coupling effect is mitigated
if R and Care finite.
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+ 4R (30 +5)C . +10C, +5C)s* +O(s”)

Same Direction Drive

In this section, the case where adjacent lines are

driven from the same direction is treated. The
situation is depicted in Fig. 6. For this case, the
equivalent resistance of driver MOSFET’s and the
inputcapadmmeofthenextgatecanbetakeninm
account in the analysis, that is, Ry and C, can be
finite. 'IheappmximzﬁOnofadriverMOSFET
by an equivalent resistor is explained in the
Appendix in detail.

x=l

V(0)=E/ . 2()=0
ol E c <
Fig. 6 Adjacent lines are driven from the same
direction.

The boundary conditions for this case are

'writtm as follow.

10v,| ' _—vl|
r&xl,_o :_0

- __‘ -
xmQ l
1dv,
-; ax C‘%:-l
1dv,
=& ¢
L r ax x»1 ti,x-l

If we define u,=v,+nv, and u,=v,-v,, u, and w,
give the following equations.




- me— e ——

o . —— i T +1

© AR e A g —aggE - m—

du, .
x: & | )]
d'u,  du, du, __du,

AR =’°a(up)'m_ o’

The boundary conditions for u, and w, are as

follows.
1o _nE-u| -
T axl;-o R: L.o
_ld, "E w|
p r ax =) L-o (8)
_low| _o o
r ax x-l_Ct‘_-Lﬁl '
C1dw,| _C du, |
L r ax =l p at,lmll

On the other hand, it is well known that the
equation

I

ox* at
with the boundary condition,

13v] _E-v|

Tt X, K, L=o

10v av
- i) =C
L I ax'x-! ‘—le

has the following solution.

vﬂ D 1+2Kke = ==1+K, _E

E =l

This means that v(l,t) can be approximated with
single exponential function [2-4]. ©, is the pole
with minimum  sbsolute value, md K, is the
corresponding residue and can be approximated as
follows. - '

275

R, +C;+1
Ry +C+mi/4 ©)
1.04
R:Cq +R, +C,+(2/7)’

* Comparing the above known solution and Eq.
(7) and Eq. (8), we can get approximate formulas
foru, and u,. v, and v, are obtained by a linear
combination of u, and u, as follows.

K, =-1.01

O, =

ot _sit

v,(lt) n (K R K’e""c
E n+1L 1 €

(10)

v,(l,t)sl_'_ 1 (K :g_'_nK;epac
| E n+1\’

In the above expression, K,' and o, are
exprcssedasfoﬂoﬁs.
R, +C;/p+l
R, +C,/p+n/4
1.04
R,C,/p+Ry+Cq/p+(2/%)

Thsp&aknoiseanmlimdcmnbe_de_rivedby
searching for the peak vale in Eq. (10). This
can be achieved by differentiating Eq. (10) and
solve dv,/0t=0 in terms of t If we write the
sohlﬁontoﬂliseqnaﬁonastp,t,canbeexpressed
as follows.

t _E_hi?_’:!_p_)- (11)
’ 1—01

Now, putting t, back in Eq. (10), the peak noise

oy
-EL = m[ ( p)"ll’rﬂl' K’(:::f p)—ﬂ;“‘i] ;
(12)

K = -1.01

01::‘



Several special cases are discussed m the
following chapters.

a. Case: R, C;»1
In this case, K=K,'=1, 6,=IAR;C;) and

o,'=pAR,C;) hold. Then, from Eq.-(12), v,—0.
This case corresponds o the oid sitnation where
interconnection capacitance and resistance are not
large compared to MOSFET related resistance and
capacitance. For this case, as a matter of course,
noise issues can be neglected. The capacitance
couplingnoiseisraﬂmanewheadadleinVLSI
designs.

b. Case: R, C; « 1
In this case, K,=K,'=-4/t and 0,=0,'=R'/4
hold.

4( 1 W _1
VP=—
t \l+nm; 1+nM

...
2+(a+1n

(valid when 1 < 2)
Special case expressions for two-, turee- and
infinite line systems are shown below.

[ v, nC,/C
E  2+@+1)C,_/C
v, 1 CIC
E 21+C,/C
v, 2C.IC
E 1+15C_/C

v, CIC ...
Tro_Zel™ (infinite
|E"Tr2c,/c M fines)

(general)

(two — line)
(13)
(three — line)
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'I‘hcapprpximaﬁonisvalidwthcICSZ. If

_ﬂle_ml_insmpadmmcoisequaltothc

grounding capacitance, C, which can be happened
in deep submicron designs, V,/E for two-, three-
and infinite line system are 0.25, 0.40 and 0.33
respectively.  This means thar the noise induced

bythnconplhgwmﬂdgouptow%ofmesignal

-swing.whichisthesamesituaﬁonasinmc

previous chapter. This situation can be verified
bymeSPICEsimﬂaﬁonasseeninFig. 7.

- ol -

Normalized Voltage: v/E

Normalized Time: YRC
Fig. 7 SPICE sinmlation results for the case
where adjacent lines are driven from the
same direction (three lines).

For this case, the tine when the noise shows
the peak, t, is approximated as follows.

f 4 plop

RC = p-1
c. Case: C;«1

This is similar to the previous case and the noisc
amplitnde is approximated as follows.




LS : 1 '
v =RT+111 1 LI - a :_:-H‘-O,CT-O
P R.+% \l+nn) l4+nn. S b+ Ryl Crad
R+ o g | = ——ReCet
= —X ralid when 1 < 2 2t Lo
TRl Traein e nNED 8 L,...m
ot
d. Case: RTD 1 .g | o'y
In this case, E et /
: | 2|
__ 1 ;;? .n, - | x
Vo= l1+nn, 1l+n,Y : &
1 Al _ n: GoC
oy L. , Fig.9 Simulated and calculated peak noise
’=0-3m (valid when W' < 2) amplitode using Eq. (12).  Adjacent
. lines are driven from the same direction.
, where 7' = CH(C+CY). [ ameml |
R v
Comparison with Simulation 5 | 8 —e—Rya5,Cral
-] 3 Lm
SPICE simulation is caried out to demonstrate rl-n-n-
the validity of the noise peak formulas of Eq. (6) 50.5 74
and Eq. (12). The simmlation results are % 3
compared with the calculated results using the  § =
analytical formulas in Figs. 8,_9md10. As seen [
from the figures, excellent agreement is observed 1 ke 100

between the simulated and calculated resnits. Fig. 10 Simulated and calculaed peak noise
amplimde using Eq. (12). Adjacent

wh
L
E

o] Conclusion

..... Simple yet useful analytical expressions for

: peak noise amplitude for capacitively coupled two-,
calculated results using the derived formmias of Eq.
(6) and Eq. (12) coincide excellently with SPICE
simulation results.

. | - g In deep submicron VLSI designs where C,. can
. wCe bewmpuablctoc,mcnoiseinducedbyme
Fig. 8 Simulated and calculated noise  coupling goes up to 40% of the signal swing.
amplimde using Eq. 6. Agf.;ngt lines )
are driven from the opposite direction. -

Noemalized Pnﬁli\lolhgo: Vp/E
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Appendix

Approximation of a driver MOSFET by a
resistor

In the text, the driver MOSFET is assumed to
be modeled as an equivaent resistor, R,, and the
receiver MOSFET is assumed to be modeled as an
equwaluncapamorc,. Itxswdlmwnﬂmﬂae
mmvchOSFETcanbewe_lquxmmdbya
however, may need discussion and the topics is
touched on in this Appendix.

A typical 0.5pm CMOS case is shown in Fig.
Al where a long RC line is driven by a CMOS
inverter. When R, is greater or equal than R, the
behavior of the system is determined by a
MOSFET and not by the distributed RC line.
The behavior of the RC distributed line is
important.  Therefore, the following discussion
is confine to the case when R is greater than R,

Fig. A2(a) shows a driving pomt voltage, V,,
and a receiving point voltage, V. PMOS of the
inverter drives the line when the line goes from
zero to “High”. When R is greater than R, V,
follows the slower slope than V,. Then, PMOS
drives the interconnect in the linear region for most
of the time as is shown in Fig. A2(b). In this
case, R, can be well approximated as a linear
resistor whose resistance is 20002.

W=
4o 5\@5""‘”““\:@40;05
3.3V—| . 1.2kQ 0.5
t=0 _ C=1.8pF

Fig. Al Along RC line driven by PMOS.
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1 |
" Time [ns] 14 ImA]

Fig. A2 (a) Voltage waveforms of driving point
~ voltage, V,, and receiving point

V. mcaseofdmtenbyPMOS () DC
characteristics of the driver PMOS.

SPICE simmlation is carried out using the
resaltant equivalent resistor as shown in Fig. A3.
Fig. A4 shows waveforms of V, and V, with
various valnes of R, It is seen that if R is
chosen as a linear region resistance of PMOS, the

equivalent resistor approximation is good.
£ vo 10mmv 10/0.5
vl [33v — JR=t2xa >
0 C=1.8pF

Fig.ABAlongRClmendrNenbydm
resistance of a dnver
MOSFET, R,




4 6 -8 10

Fig. A4 Waveforms of.‘ﬂ_mdrivingpointvohnge,
V,, and recaaving point voitage, v,
The resistance of driver
MOSFET, R,, is varied as a parameter.
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