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Abstract—This paper describes a variable supply-voltage (VS)
scheme. From an external supply, the VS scheme automatically
generates minimum internal supply voltages by feedback control
of a buck converter, a speed detector, and a timing controller so
that they meet the demand on its operation frequency. A 32-b
RISC core processor is developed in a 0.4-�m CMOS technology
which optimally controls the internal supply voltages with the VS
scheme and the threshold voltages through substrate bias control.
Performance in MIPS/W is improved by a factor of more than
two compared with its conventional CMOS design.

Index Terms—Buck converter, low power CMOS circuits, low
threshold voltage, low voltage.

I. INTRODUCTION

L OWERING both the supply voltage and threshold
voltage enables high-speed, low-power operation

[1]–[4]. Fig. 1 depicts equispeed lines (broken lines) and
equipower lines (solid lines) on a - plane calculated
from their theoretical models [5], [6]. Typically, circuits are
designed at V 10% and V
0.1 V as shown by a rectangle in Fig. 1. This rectangle is a
design window because all the circuit specifications should be
satisfied within the rectangle for yield-conscious design. In the
design window, circuit speed becomes the slowest at the corner

while at the corner power dissipation becomes the highest.
Therefore, better tradeoffs between speed and power can be
found by reducing fluctuations of and especially
in low [7], [8]. The equispeed lines and the equipower
lines are normalized at the corner and as designated
by normalized factor and , respectively, so that it can
be figured out how much speed and power dissipation are
improved or degraded compared to the typical condition by
sliding and sizing the design window on the - plane.
For example, at V 5% and V
0.05 V power dissipation can be reduced to about 40% while
maintaining the circuit speed. In this way, optimizing
and is essential in low-power high-speed CMOS design
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Fig. 1. Exploring low-VDD, low-VTH design space.

while they are given as constant and common parameters in
the conventional CMOS design.

can be controlled through substrate bias. A variable
threshold-voltage CMOS (VTCMOS) technology is developed
[6], [8]–[12]. It dynamically varies through substrate-bias

. is controlled so as to compensate fluctuations
in an active mode, while in a standby mode and in the
testing, deep is applied to increase and cut off
subthreshold leakage current. It is reported in [9] that
fluctuations can be reduced to0.05 V under 0.15 V process
fluctuations.

A self-adjusting voltage reduction circuit has been devel-
oped [13] using a phase locked loop. However, there has been
no report on a digital control scheme. This paper presents
a digital circuit scheme to control on a chip, namely
the variable supply-voltage scheme (VS scheme). In the VS
scheme, a dc-dc converter [14] generates an internal supply
voltage very efficiently from an external power supply.

is controlled by monitoring propagation delay of a
critical path in a chip such that it is set to the minimum
of voltages in which the chip can operate at a given clock
frequency . This control also reduces fluctuations,
which is essential in low-voltage design. A 32-b RISC core
processor is designed with the VS scheme in the VTCMOS
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Fig. 2. Variable supply-voltage (VS) scheme.

[15] and achieves more than double the MIPS/W performance
compared with the previous CMOS design [16] in the same
technology.

In Section II, the VS scheme is described. Circuit im-
plementations are presented in Section III together with a
discussion of low-power circuit design. The RISC core with
the VS scheme is fabricated in a 0.4-m CMOS technology
and compared with the previous design. The experimental
results are reported in Section IV. Section V is dedicated to
conclusions.

II. V ARIABLE SUPPLY-VOLATAGE (VS) SCHEME

The VS scheme is illustrated in Fig. 2. It consists of three
parts: 1) a buck converter, 2) a timing controller, and 3) a
speed detector. The buck converter generates
for the internal supply voltage . is an integer from 0
to 63 which is provided from the timing controller. Therefore,
the resolution of is about 50 mV for V.
A duty control circuit generates rectangular waveforms with
duty cycle of whose average voltage is produced by the
second-order low-pass filter configured by external inductance

and capacitance . The lower limit of can be set
in the duty control circuit to assure the minimum operating
voltage of a chip. The upper limit can also be set to prevent

from transiting spuriously from 63 to 0 as a result of noise.
The timing controller calculates by accumulating num-

bers provided from the speed detector,1 to raise and
1 to lower . The accumulation is carried out by a

clock whose frequency is controlled by a 10-b programmable
counter.

The speed detector monitors critical path delay in the chip
by its replicas under . When is too low for the
circuit operation in , the speed detector outputs1 to raise

. On the other hand, when is too high, the speed
detector outputs 1 to lower . By this feedback control,

the VS scheme can automatically generate the minimum
which meets the demand on its operation frequency. For fail-
safe control, a small delay is added to the critical path replicas.

Since the speed detection cycle based on (e.g., 25 ns)
is much faster than the time constant of the low-pass filter
(e.g., 16 s) the feedback control may fall into oscillation.
The programmable counter in the timing controller adjusts the
accumulation frequency to assure fast and stable response
of the feedback control.

There is no interference between the VS scheme and the
VTCMOS. The VTCMOS controls by referring to leak-
age current of a chip, while the VS scheme controls by
referring to . is also affected by because circuit
speed is dependent on . Therefore, is determined by
the VTCMOS, and under the condition, is determined
by the VS scheme. Since VTCMOS is immune to noise
[6], there is no feedback from the VS scheme to the VTCMOS,
resulting in no oscillation problem between them.

III. CIRCUIT IMPLEMENTATIONS

A. Buck Converter

Fig. 3 depicts a circuit schematic of the buck converter.
When the output of a 6-b counter is between 0 and , a
pMOS of an output inverter is turned on. Whenis between

and 63, an nMOS of the output inverter is turned on.
When is between and , and between 63 and 0,
neither the pMOS nor the nMOS is turned on to prevent short
current from flowing in the large output inverter. The output
voltage of the buck converter is therefore controlled with
64-step resolution. This resolution causes50 mV error at

from V, which yields 3.3% error at
V. Note that the error is always positive because

the speed detector cannot accept lower than a target
voltage.
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(a)

(b)

Fig. 3. Buck converter: (a) circuit schematic and (b) timing chart.

The external low-pass filter and , an effective resistance
of the output inverter , and its switching period (or
switching frequency ) should be designed considering dc-
dc conversion efficiency, output voltage ripple when output
current is constant , output voltage drop when
output current changes , time constant of the filter
as an index of the response, and pattern area.

The efficiency can be expressed as follows:

(1)

where is power dissipation at the output inverter caused
by overshoot and undershoot at from and ground
potential due to inductance current, and is power dis-
sipation of control circuits. Fig. 4 shows simulated waveforms
at . As shown in the figure, inappropriateincreases .
Its analytical model can be derived from an equivalent
circuit in Fig. 5 with the following two assumptions.

1) Duty ratio is assumed to be 0.5 for calculation
simplicity.

2) Damping factor of the low-pass filter is assumed to be
one for fast and stable response

(2)

After the conventional manipulation of differential equations
of the equivalent circuit, is given as follows (see Appen-
dix A for the detailed derivation):

(3)

where

(4)

is the time constant of the filter which is related to settling
time and given by

(5)

Fig. 4. Simulated waveforms atVX .

Fig. 5. EquivalentLCR circuit.

Fig. 6. Power dissipation dependence on scale-up factor in cascaded invert-
ers.

The output voltage ripple when the output current is con-
stant, , can also be derived from the differential
equations and expressed as follows (see Appendix A for the
detailed derivation):

(6)

Sudden change in output current causes the output voltage
drop . Suppose all the circuits under start to operate
at once. The output current changes from zero to . As
a result, the filter discharges, and drops. Current is
then supplied through the filter to recover the voltage drop.
This recovery time is considered to be an order of. So the
amount of charge of is derived from to yield the
voltage drop of . The output voltage drop when the
output current changes is therefore approximately
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given by

(7)

, on the other hand, is written as

(8)

where

(9)

The first term is power dissipation of the duty control circuits
where operating frequency is is the output
voltage resolution which is 64 in this design. The second term
is power dissipation of the buffer circuit in the buck converter,
and the third term is power dissipation of the replica circuits
in the speed detector. In each term,is switching probability
and is capacitance.

Since most of the layout pattern is occupied by the large
inverter and the buffer circuits, pattern area can be expressed
as

(10)

where and are constants.
From these equations, the smalleris, the smaller is

and the smaller the output voltage ripple. On the other hand,
for the smaller settling time, the smaller is preferable.
Therefore, should be reduced, which in turn increases

. In this way there are tradeoffs among these param-
eters.

For example, under the following constraints:

Output voltage: V;
Output current: mA mW);
Output voltage ripple when output current is constant:

%;
Output voltage drop when output current changes:

%;
Filter time constant (related to settling time): s;
Pattern area: m-square;
dc-dc efficiency: maximum.

, and can be numerically solved as follows.

Low-pass filter inductance: H;
Low-pass filter capacitance: F;
Output inverter effective resistance: ;
Output inverter switching frequency: MHz.

For the equivalent in the output inverter, transistor
size of the pMOS and the nMOS is as large as 7.6 mm and 3.8
mm, respectively. Cascaded inverters are necessary to drive the
output inverter with a typical inverter whose pMOS and nMOS
transistor size is about 8m and 4 m, respectively. When
transistor size ratio of the final stage to the first stage

of the cascaded inverters is given, the optimum scale-up
factor and the optimum number of stagesto minimize
the power dissipation are given by (see Appendix B for the

detailed derivation)

(11)

(12)

where is the ratio of power dissipation due to capacitance
charging and discharging to power dissipation due to crowbar
current when . From simulation study depicted in Fig. 6,
the above equations hold very accurately with . The
optimum scale-up factor becomes four, and the optimum
number of stages, becomes five in this design.

B. Speed Detector

A circuit schematic of the speed detector is shown in
Fig. 7(a). It has three paths under : 1) a critical path
replica of the chip “CPR,” 2) the same critical path replica
with inverter gates equivalent to 3% additional delay “CPR+,”
and 3) direct connection between flip-flops “REF.” Since the
direct connection can always transmit the test data correctly
within the cycle time of even in low , it can be
referred to as a correct data. Other paths may output wrong
data when the delay time becomes longer than the cycle time of
the given at the given . By comparing the outputs
of these paths with that of the direct connection, it can be
deduced whether or not the chip operates correctly in at

. When is not high enough, the outputs of the
two paths “CPR” and “CPR+” are both wrong, and the speed
detector outputs 1 to raise . When is higher,
equivalent to more than 3% delay in the critical path than the
given , the outputs of the two paths are both correct, and
the speed detector outputs1 to lower . When is
in between, the output of the critical path “CPR” is correct
and that of the longer path “CPR+” is wrong, and the speed
detector outputs 0 to maintain . This nondetecting voltage
gap is necessary to stabilize but yields an offset error.
The offset error should be minimized but no smaller than the
minimum resolution of the . This is because if the gap
is smaller than the resolution, no level may exist in the
voltage gap. This may cause the output voltage ripple as large
as the resolution. The 3% additional delay corresponds to 80
mV in , which is larger than the resolution of 50 mV. In
total, may have 130 mV offset error.

A timing chart of the speed detector is illustrated in
Fig. 7(b). The test data in this figure is an example of the
critical path becoming critical in propagating a low-to-high
signal. The test is performed every eight clock cycles. The
other seven clock cycles are necessary in low for not
evaluating test data provided before. can be set at
very low voltages where the propagation delay becomes eight
multiples of the cycle time of . This mislocking, however,
can be avoided by setting the lower limit of in the
timing controller. The compared results are registered by flip-
flops which are held by a hold signal as shown in Fig. 7(a)
until the next evaluation.

Since the critical path replicas operate at , the signals
need to be level-shifted to . A sense-amplifier flip-flop
[17] is employed to perform level-shifting and registering
simultaneously.
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(a)

(b)

Fig. 7. Speed detector: (a) circuit schematic and (b) timing chart.

C. Timing Controller

A timing controller adjusts the control frequency of ,
to realize fast and stable response of the feedback control.
The higher the , the faster the response but the lower
the stability. Conventional stability analysis and compensation
techniques, however, are rather difficult to apply for several
reasons. In the speed detector, circuit speed is a nonlinear
function of . Its output is 1 or 1 regardless of
the magnitude of the error in . Most of the control
is performed in digital while the low-pass filter is analog.
With these difficulties, a programmable counter is introduced
as a practical way to control . Based upon experimental
evaluation, the optimum can be found and set to the
programmable counter.

Fig. 8 depicts simulation results of after power-on.
When is 1 MHz, much faster than the roll-off frequency of
the low-pass filter, 10 kHz, oscillation appears in . When

is 62.5 kHz, on the other hand, the response of is
fast and stable. can reach the target voltage in 100s
after power-on.

IV. EXPERIMENTAL RESULTS

A 32-b RISC core processor R3900 is implemented by
about 440 k transistors, including a 32-b multiply/accumulate
(MAC) unit, a 4-kB direct mapped instruction cache, and
a 1-kB two-way set-associative data cache [16]. Layout is
slightly modified for the VS scheme and the VTCMOS. A
VS macro and a VT macro are added at the corners of the
chip. Many of the substrate contacts are removed [12] and the
rest are connected to the VT macro. The chip is fabricated in a
0.4- m CMOS n-well/p-sub double-metal technology. A chip
micrograph appears in Fig. 9. Main features are summarized in
Table I. The VS and the VT macros occupies 0.450.59 mm

Fig. 8. SimulatedVDDL response after power-on.

Fig. 9. Chip micrograph.

TABLE I
FEATURES

Technology 0.4�m CMOS, n-well/p-sub,
double-metal,VTH = 0:05 V � 0.1 V

CompensatedVTH 0.2 V� 0.05 V
ExternalVDD 3.3 V� 10%
InternalVDDL 0.8 V� 2.9 V� 5%
Power dissipation 140 mW @ 40 MHz
Chip size 8.0� 8.0 mm2

VS macro size 0.45� 0.59 mm2

VT macro size 0.49� 0.72 mm2

and 0.49 0.72 mm, respectively. The total area penalty of
the two macros is less than 1% of the chip size.

Fig. 10 is a shmoo plot of the RISC processor. The RISC
core operates at 40 MHz at 1.9 V, and at 10 MHz at 1.3 V.
In this figure, measured versus are also plotted.
The VS scheme can generate the minimum of the
voltages where the circuit can operate at . Practically fail-
free operation should be guaranteed. The VS scheme should be
designed such that is controlled to sit sufficiently inside
of the pass region in the shmoo plot by adding supplementary
gates to the critical path replicas.
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Fig. 10. Shmoo plot of R3900 and measuredVDDL.

Fig. 11. Measured power dissipation versus operating frequency.

Fig. 11 shows a measured power dissipation of the RISC
core without I/O. White circles and black squares in this figure
represent power dissipation at 3.3 V and determined
by the VS scheme, respectively. The VS scheme can reduce
power by an amount larger than that which can be achieved by
reducing clock frequency. The power dissipation at
in the VS scheme is about 20 mW, which comes from the
dc-dc converter. This power loss is mainly due to circuits
for experimental purposes and can be reduced to lower than
10 mW. The dc-dc efficiency is measured and plotted in
Fig. 12. The left side of the peak is degraded by the power
dissipation in dc-dc itself, while the right side of the peak is
degraded by parasitic resistance. Due to the power dissipation
of the experimental circuits and due to high contact resistance
of about 6 in a probe card, the maximum efficiency is lower
than anticipated. If the experimental circuits are removed and
the chip is bond-wired in a package, the maximum efficiency
is estimated to be higher than 85%.

Measure performance in MIPS/W are 320 MIPS/W at
33 MHz, and 480 MIPS/W at 20 MHz, which are improved by
a factor of more than two compared with that of the previous
design, 150 MIPS/W [16].

Fig. 13 shows measured voltage regulated by the VS
scheme when is varied by about 50%. The robustness

Fig. 12. Measured dc-dc efficiency.

Fig. 13. MeasuredVDDL versusVDD.

to the supply-voltage change is clearly demonstrated.
is regulated at a target voltage as long as is higher than
the target.

V. CONCLUSION

The VS scheme is presented and examined. The VS scheme
can minimize internal supply voltages automatically according
to its operating frequency and reduces voltage fluctuations. The
300 MIPS/W RISC core processor with the VS scheme in the
VTCMOS has been fabricated. Performance in MIPS/W has
been improved by a factor of more than two compared with
the previous design just by adding the VS macro and the VT
macro. Area penalty is smaller than 1%.

APPENDIX A
DERIVATION OF POWER EQUATIONS

FROM EQUIVALENT LCR CIRCUIT

Differential equations of the equivalent circuit in Fig. 5 are
given by

(A1)

(A2)
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when (pMOS is on), and

(A3)

(A4)

when (nMOS is on).
With the following boundary conditions:

(A5)

(A6)

(A7)

(A8)

and the following two assumptions discussed in Section III-A:

(A9)

(A10)

the differential equations can be solved as follows:

(A11)

(A12)

where

(A13)

(A14)

(A15)

(A16)

is therefore given by

(A17)

(A18)

Since is power dissipation at the output inverter caused
by overshoot and undershoot at from and ground
potential, it can be calculated by

(A19)

(A20)

Since we assume is . The maximum
output ripple can be expressed by

(A21)

(A22)

Solving these equations we obtain

(A23)

(A24)

APPENDIX B
POWER OPTIMIZATION OF CASCADED INVERTER STAGES

In this appendix, optimum scale-up of a chain of CMOS
inverters for minimum power dissipation is discussed when
transistor size ratio of the final stage to the first stage is given.
This problem can be seen not only in the dc-dc converter but
also in an output pad where the output transistor size is given
from specifications such as drive capability.

Power dissipation in theth stage can be expressed as
follows:

(B1)

where is power dissipation due to charging and discharg-
ing and is power dissipation due to crowbar current. Let us
assume that is proportional to transistor width and that

is proportional to and inversely proportional to signal
slope. Let us also assume that the signal slope is proportional
to because driving current is proportional to
and loading capacitance is proportional to. Then and

are given by

(B2)

(B3)

where and are constants. Total power dissipation is
therefore given by

(B4)

where

(for all ) (B5)

(B6)

(B7)
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When the total power dissipation becomes
minimum. Then

(B8)

(B9)
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