LSI design toward 2010 and low-power technology

Takayasu Sakurai

University of Tokyo Center for Collaborative Research, University of Tokyo 7-22-1 Roppongi, Minato-ku, Tokyo, 106-8558 Japan Phone: +81-3-3402-6226 E-mail: tsakurai@iis.u-tokyo.ac.jp

Biography

Takayasu Sakurai received the B.S., M.S. and Ph.D degrees in EE from University of Tokyo, Japan, in 1976, 1978, and 1981, respectively. In 1981 he joined Toshiba Corporation, where he designed CMOS DRAM, SRAM and BiCMOS ASIC's. He also worked on interconnect delay and capacitance modeling known as Sakurai model and alpha power-law MOS model. From 1988 through 1990, he was a visiting researcher at Univ. of Calif., Berkeley, doing research in the field of VLSI CAD. From 1990 back in Toshiba, he managed RISCs, media processors and MPEG2 LSI designs. From 1996, he is a professor at the Institute of Industrial Science, University of Tokyo, working on low-power and high-performance system LSI designs. Prof. Sakurai served as a conference chair for Symposium on VLSI Cirucits, a vice chair for ASPDAC and a program committee member for ISSCC, CICC, DAC, ICCAD, FPGA workshop, ISLPED. TAU, and other international conferences. He is also consulting to US startup companies.

Summary:

If we look into the scaling law carefully, we find that three crises can be stringent in realizing LSI's of the year 2010: namely power crisis, interconnection crisis, and complexity crisis.

As for power crisis, there are activities to lower the power consumption from device level, circuit level to system level. Lowering supply voltage (V_{DD}) is very effective in reducing the power but the threshold voltage (V_{TH}) should be reduced at the same time for high-speed operation. The low V_{TH} , however, increases the leakage current. To overcome this situation, V_{TH} and V_{DD} control through the use of multiple V_{TH} , variable V_{TH} , multiple V_{DD} and variable V_{DD} are intensively pursued and some have been productized. At the system level, a system LSI approach is promising for realizing low power. The new trend is to exploit cooperation of software and hardware. In the sub 1-volt design, watch out for the abnormal temperature dependence of drain current.

The interconnection will be determining cost, delay, power, reliability and turn-around time of the future LSI's rather than MOSFET's. RC delay problem can be solved through LSI architecture realizing "the further, the less communication" with the help of local memories.

It is just impossible to design LSI's with 100 million transistors from scratch. The complexity issue can only be solved by the sharing and re-use of design data. So-called IP-based design will be preferable. The virtual components are put together on a silicon to build billion transistor LSI's, which can be compared to the present system implementation with pre-manufactured LSI components.

In the year 2012, sensors / actutors can be integrated on a chip with 0.06 μ m 2G Si FET's with V_{TH} & V_{DD} control. Globally asynchronous LSI's with locally synchronous 10GHz clock will be implemented.

ICVC '99/10

LSI Design Toward 2010 and Low-Power Technology

Prof. Takayasu Sakurai Center for Collaborative Research, and Institute of Industrial Science, University of Tokyo E-mail:tsakurai@iis.u-tokyo.ac.jp

- 1 Scaling and three crises
- 2 Power crisis
- 3 Interconnection crisis
- 4 Complexity crisis

Fig.1 Title

Scaling Law

Scaling Law Drai Sou Size 1/2 0.2micron Unfavorable effects Favorable effects x1/2 Size Power x1.6 RC delay Voltage x1/2 x3.6 **Electric Field Current density** x1 x1.8 Speed x2 Voltage noise x2.5 x1/4 Cost Design complexity x4

Three crises in VLSI designs

T.Sakurai

- Power crisis
- Interconnection crisis
- Complexity crisis

Ever Increasing VLSI Power

(Power consumption of processors published in ISSCC)

Fig.6 Ever incressing VLSI power

Fig.3 Limit of miniturization

Fig.7 VDD, power and current trend

Necessity for Low-Power Design

Power range	Concerns	Typical applications (All need high-perf.)
< 0.1W	- Battery life	Portable · PDA · Communications
~ 1W	 Inexpensive package limit System heat (10W / box) 	Consumer · Set-Top-Box · Audio-Visual
> 10W	 Ceramic package limit IR drop of power lines 	Processor · High-end MPU's · Multimedia DSP's

T.Sakurai

Fig.8 Necessity of low-power design

Voltage waveform of CMOS inverter

T.Sakurai

T.Sakurai

Fig.11 Voltage waveform of CMOS inverter

Short-circuit power dissipation formula

K. Nose and T. Sakurai, "Closed-Form Expressions for Short-Circuit Power of Short-Channel CMOS Gates and Its Scaling Characteristics," ITC-CSCC (Korea), July 1998.

Fig.12 Short-circuit power dissipation formula

T.Sakurai

Fig.13 Comparison between proposed formula and other formulas

Fig.14 The change of the short-circuit power dissipation with scaling

Voltage dependent gate cap. effect

Fig.15 Voltage dependent gate capacitance effect

Solving power issues

Fig. 18 Power and delay

Super Cut-off CMOS Scheme (SCCMOS)

Fig.20 Super cut-off CMOS scheme

Delay characteristics (inverter & NAND)

Fig.21 Delay characteristics of SCCMOS

Fig.22 Losing information in standby

Dynamic Leakage Cut-off

Fig.23 Dynamic leakage cut-off SRAM

Leakage Reduction of DLC SRAM

Fig.24 Leakage reduction of DLC SRAM

Fig.25 Power distribution in CMOS LSI's

Fig.27 Positive temperature coefficient in low-voltage region

T.Sakurai

Cause of positive temp. dependence of I_{DS}

• α -power law model (T = Temp. μ = Mobility)					
$I_{DS} \propto \mu(T)$ (V_{DD} - V_{TF}	т 🖊	т			
$\mu(T) = \mu(T_0)(T / T_0)^{-m}$		1			
$V_{TH}(T) = V_{TH}(T_0) - \kappa(T - T_0)$			1		
Typical Value : α=1.5, m=1.5, κ=2.5[mV/T]					
Effects of V_{TH} and μ on I_{DS} when temp. goes up					
100[K]	V _{TH} e	ffect	μ effect		
V _{DD} =2.5V, V _{TH} =0.5V	10%	/	35% 🔪		
V _{DD} =1.0V, V _{TH} =0.2V	55%	/	35%		

T.Sakurai Fig.28 Cause of positive temperature dependence of I_{DS}

Fig.29 D-Type CMOS

SOI Processors in ISSCC'99						
Paper#	WP25.1	WP25.3	WP25.7	WP25.4		
Company	IBM (East Fishkill)	IBM (Essex & Austin)	IBM (Rochester)	Samsung		
Target	PowerPC 604e	PowerPC 750	PowerPC	Alpha		
	32b	for Apple	64b	64b		
PD/FD	PD	PD (SIMOX)	PD (SIMOX)	FD (SIMOX/Unibond no dep.)		
Rule	0.25um		0.2um (Leff=0.12um)	0.25um		
Interconnect	5 Al + Wlocal	Cu	6 Cu	4 AI		
Area	49mm2		139mm2	209mm2		
# of Tr's	6.5M		34M	9.7M		
Freq.	500MHz	580MHz@85C, fast proc.	550MHz	600MHz		
VDD	1.7V	2V	1.8V	1.5V (2V I/O)		
Power		5.1W @2V,400MHz	24W	40W		
Speed gain o	25-30%	20%	20%	30%@1.2V, 20%@1.5V SRAW		
	22% Ctotal reduction	12% by Cj	15-20% simple gates			
	10-15% more lds	15-25% by less body-bia	25-40% complex gates			

Fig.30 SOI processors in ISSCC'99

T.Sakurai

Hi-Speed is Low-Power

T.Sakurai

T.Sakurai

Approach to low-power LSI

Example of MPEG2 decoding

~ 25W

~ 4W

~ 0.7W

Fig.32 Approach to low-power LSI

DSP

High flexibility

Low-power

Processor (software)

Dedicated sytem LSI (SW/HW)

Integration (system LSI) is the key to low-power

Operation	Energy/Op (pJ)	
Add	7	
3-2 Add	2	
Multiply	40	
Latch	1.8	
Internal read	36	
Internal write	71	
I/O	80	
External memory	16000	

B.M.Gordon, E.Tsern, T.Meng,"Design of a Low Power Video Decompression Chip Set for Portable Applications," J. of VLSI Signal Processing Systems 13, pp.125-142, 1996

Software feedback loop for low-power

T.Sakurai

Fig.33 Homogeneous vs heterogeneous

DRAM Embedding

K.Sawada, T.Sakurai, et al, "A 72K CMOS Channelless Gate Array with Embedded 1Mbit Dynamic RAM," in Proc. CICC'88, pp.20.3.1-20.3.4, May 1988.

Two orders of magnitude improvement in bandwidth and power

T.Sakurai

Fig.36 DRAM embedding

Neural chip

3 orders of magnitude smaller power consumption for recognition compared to software implementation S.Takeuchi &T.Sakurai, ICCD'98, Oct.1998.

T.Sakurai

Compact yet High-Performance (CyHP) Library for Low-Power Technologies

Fig.38 Compact cell library for quick TAT

Fig.39 Lorentz force MOS for micro IDDQ test

Interconnect determines cost & perf.

Interconnect parameters trend

RC delay and gate delay

Fig.42 RC delay and gate delay

T.Sakurai

Fig.44 The further, the less

Fig.45 Locality in space and time

Fig.47 Coupling noise in RC bus

Fig.48 Coupling among interconnections

Fig.54 Conclusions