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Abstract

This paper will cover several of the schemes
including  multi-V,, variable Vy, multi-V,, and
variable V,,, to achieve low-power systems. Circuit

level ideas to software related research are described.

1. Introduction

Power consumption of the VLSI's has been ever
increasing (Fig.1) and a VLSI processor dissipating
more than 100W has been introduced. A roadmap is
suggesting even more power increase in the future with
the supply voltage less than 0.5V (Fig.2). Thus, low-
power and low-voltage designs are and will continue to
be important for further progress of VLSI's.

2. Power consumption of CMOS VLSI's

The expression for power consumption is shown in
Fig.3. The crowbar current component (or short-circuit
current component) is less than 10% of total active
power at present and will be decreasing in the future
when V,/Vy, is increased (Fig.4-7). Consequently, the
charging and discharging current component is
dominant in an active mode and in a standby mode,
leakage current component dominates. In the leakage
components, subthreshold current is dominant now but
gate tunneling current and gate induced drain leakage
should be considered in the future. In calculating the
dynamic current component, the voltage dependent gate
capacitance should be watched out for (Fig. 8, 9).

Using typical values, power and delay are calculated
for various Vgp and Vo in Figs. 10 and 11. In order to
reduce the power, it is preferable to decrease V,, but
decreasing Vo, leads to the decrease of performance.
When we reduce Vpp, if we reduce Vy,, at the same time,
it is possible to maintain the speed of circuits. Then, the
issue is the increase of the subthreshold leakage in the
low-V, region. This is the reason why some Vp-Vy,
control is needed to achieve low-power yet high-speed
circuits.

3. Multi-V,, Variable V., Multi-V,
and Variable V|,

Using two Vq,'s (MTCMOS) is one idea to take the
trade-off between the speed in an active mode and the
leakage in a standby mode. The other idea is to vary the
Vi dynamically using substrate bias effect, namely
VTCMOS, which has been also pursued and
productized {8, 9]. MTCMOS is definitely one way but
does not operate properly when V,, decreases below

0.5V. To overcome this shortcoming, Super Cut-off
CMOS (SCCMOS) is proposed (Fig.12-15). By over-
driving the MOS gate in a standby mode, it is possible
to completely cut off the leakage current of low-Vy,
MOSFET's. The original MTCMOS and VTCMOS are
applicable to logic part of the design but are not
applicable to low-voltage SRAM'. If MTCMOS is
applied to an SRAM, the stored information is lost in a
standby. On the other hand, if VTCMOS is applied to
an SRAM with low-V, memory cells for high-speed
purpose, the leakage current in an active mode is
enormous. A possible solution to this problem is row-
wise selective biasing as is shown in Fig.16.

In a multiple-voltage scheme known as Dual-VS
scheme, critical paths are driven with higher V5, while
non-critical gates are operated under low Vp, An
example of variable V,, approach called software
feedback loop is shown in Figs.17-18. Making use of
data dependency, an order of magnitude reduction of
power is possible with the scheme. This is a
hardware-software cooperative approach for low
power.

When using sub-0.5V V, and low-V,, watch out
for the positive temperature dependence of speed
(Fig.19-21).  Thermal instability may occur when
improper package is used (Fig.22). In introducing new
circuit concept, layout modification of standard cell
library is needed sometimes. It has been shown,
however, small number of cells are sufficient in a library
to achieve high performance (Fig.33, Table I, II).

4. Other low-power approaches

Power consumption of a clock system in a digital
VLSI is comparable to the power consumed in other
logic gates (Fig.24). In order to reduce the power for
clocking, reduced swing clock scheme with special flip-
flops has been proposed (Fig.25). In the buffer insertion
process in interconnection system optimization, if the
delay is considered as a target function, the power
increase by the buffer insertion amounts up to 60%,
while if PD product is considered as an object function,
the power increase is 26% (Fig.26). Verifying the
standby power is another important issue. By using a
special current sensing device, it is possible to measure
the standby current (Fig.27-28). In an architectural level,
a system LSI approach shows lower power than a
general processor approach at the sacrifice of generality
and historically low-power has set the technology trend
(Fig.29-31).
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Fig.2 Trend in voltage and power (from SIA)
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TABLE I: Contents of 11-cell CyHP library

Flip-flops D-FF x1; D-FF x2
Inverters INV x1, INV x2, INV x4
Primitive gates | 2-NAND x2

2-NOR x2

2-XNOR x1
Compound 2-InvNAND x2
gates 2-InvNOR x2
Multiplexer 2-MUXInv x1

TABLE II: Co

ntents of 20-cell CyHP library

Flip flops D-FFN x1
Inverters INV x8, INV x16
Primitive gates | 2-NAND x|
2-NOR «x1
3-NAND x1
3-NOR «xI
Compound 3-AND-NOR x1
gates 3-OR-NAND x1

(only cells that not in Table I are listed)

Fig.24Power distribution in CMOS LSI's
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