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Abstract 
Lowering operating voltage, VDD, is a key to low-

power CMOS digital VLSI's. In order to complete a 
certain task in a required time and in order to keep 
leakage current within a tolerable level in the low VDD 
designs, VDD and VTH control is obligatory.  This talk 
will cover several of the schemes including multi-VTH, 
variable VTH, multi-VDD and variable VDD to achieve 
low-power systems.  Circuit level ideas to software 
related research are described. 

1. Introduction 
Power consumption of the VLSI's has been ever 

increasing (Fig.1) and a VLSI processor dissipating 
more than 100W has been introduced.  A roadmap is 
suggesting even more power increase in the future with 
the supply voltage less than 0.5V (Fig.2).  Thus, low-
power and low-voltage designs are and will continue to 
be important for further progress of VLSI's. 

2. Power consumption of CMOS VLSI's 
The expression for power consumption is shown in 

Fig.3.  The crowbar current component (or short-circuit 
current component) is less than 10% of total active 
power at present and will be decreasing in the future 
when VTH/VDD is increased (Fig.4-7).  Consequently, 
the charging and discharging current component is 
dominant in an active mode and in a standby mode, 
leakage current component dominates.  In the leakage 
components, subthreshold current is dominant now but 
gate tunneling current and gate induced drain leakage 
should be considered in the future.  In calculating the 
dynamic current component, the voltage dependent gate 
capacitance should be watched out for (Fig. 8, 9). 

Using typical values, power and delay are calculated 
for various VDD and VTH in Figs. 10 and 11.  In order to 
reduce the power, it is preferable to decrease VDD but 

decreasing VDD leads to the decrease of performance.  
When we reduce VDD, if we reduce VTH at the same 
time, it is possible to maintain the speed of circuits.  
Then, the issue is the increase of the subthreshold 
leakage in the low-VTH region.  This is the reason why 
some VDD-VTH control is needed to achieve low-power 
yet high-speed circuits. 

3. Multi-VTH, Variable VTH, Multi-VDD 
and Variable VDD  

Using two VTH's (MTCMOS) is one idea to take the 
trade-off between the speed in an active mode and the 
leakage in a standby mode (Fig.12).  The other idea is 
to vary the VTH dynamically using substrate bias effect, 
namely VTCMOS, which has been also pursued and 
productized [8, 9] (Fig.13-15).  The comparison of 
VTCMOS and MTCMOS is tabulated in Fig. 16.  
MTCMOS is conceptually simple and easy to 
implement and VTCMOS is better performance-wise.  
MTCMOS is definitely one way but does not operate 
properly when VDD decreases below 0.5V. To 
overcome this shortcoming, Super Cut-off CMOS 
(SCCMOS) is proposed (Fig.17-20).  By over-driving 
the MOS gate in a standby mode, it is possible to 
completely cut off the leakage current of low-VTH 
MOSFET's. The original MTCMOS and VTCMOS are 
applicable to logic part of the design but are not 
applicable to low-voltage SRAM's.  If MTCMOS is 
applied to an SRAM, the stored information is lost in a 
standby.  On the other hand, if VTCMOS is applied to 
an SRAM with low-VTH memory cells for high-speed 
purpose, the leakage current in an active mode is 
enormous.  A possible solution to this problem is row-
wise selective biasing as is shown in Fig.21. 

A multiple-voltage scheme known as Dual-VS 
scheme is shown in Figs. 22 and 24, where critical 
paths are driven with higher VDD, while non-critical 
gates are operated under low VDD.  An example of 
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variable VDD approach called software feedback loop is 
shown in Figs.25-26.  Making use of data 
dependency, an order of magnitude reduction of 
power is possible with the scheme.  This is a 
hardware-software cooperative approach for low 
power. 

When using sub-0.5V VDD and low-VTH, watch out 
for the positive temperature dependence of speed 
(Fig.27-29).  Thermal instability may occur when 
improper package is used (Fig.30).  In introducing new 
circuit concept, layout modification of standard cell 
library is needed sometimes.  It has been shown, 
however, small number of cells are sufficient in a 
library to achieve high performance (Fig.31-33, Table I, 
II). 

4. Other low-power approaches 
Power consumption of a clock system in a digital 

VLSI is comparable to the power consumed in other 
logic gates (Fig.34).  In order to reduce the power for 
clocking, reduced swing clock scheme with special flip-
flops has been proposed (Fig.35).  In an architectural 
level, a system LSI approach shows lower power than a 
general processor approach at the sacrifice of generality 
and historically low-power has set the technology trend 
(Fig.36-38). 
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Fig.1 Trend in processor power (from ISSCC)  
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Fig.2 Trend in voltage and power (from SIA) 
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Fig.3 Expression for CMOS power 
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Fig.4 Short-circuit current (crowbar current) 
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Fig.5 Expression for short-circuit power (Ref.1) 
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Fig.6 Ratio of short-circuit power (PS) vs total active 

power (PS +PD) 
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Fig. 7 Optimum VDD and VTH (Ref.2) 
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Fig.8 Voltage dependent gate capacitance (Ref.7) 
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Fig9 Effect of voltage dependent gate capacitance 
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Fig.10Power dependence on VDD & VTH 
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Fig.11Delay dependence on VDD & VTH 
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Fig.12Multi-Threshold CMOS (MTCMOS) (Ref.3) 
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Fig.13 Stanby Power Reduction circuit(SPR). Part of 
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Fig.15Measurement on VTCMOS 
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Fig.16Comparison between VTCMOS & MTCMOS 
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Fig.18Super Cut-off CMOS Scheme (SCCMOS) 
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Fig.19Maintaining information in standby 
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Fig.20Delay characteristics (inverter & NAND) of 

SCCMOS.  SCCMOS can push the limit of low-
voltage operation down to 0.5V. 
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Fig.21Dynamic Leakage Cut-off SRAM (Ref.5) 
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Fig.22Clustered Voltage Scaling for Multiple VDD’s.  

Dual voltage supply scheme (Dual-VS)  (Ref.6) 
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Fig.23Power Reduction vs. VL/VH 
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Fig.24Power reduction by Dual-VS 
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Fig.25Software feedback loop for low-power (Ref.10) 
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Fig.26Power saving by software feedback loop.  More 

than an order of magnitude reduction of power is 
possible with the scheme. 
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Fig.27Positive temperature effects on IDS- VGS in sub-1V 

region (Ref.11) 
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Fig.29Measurement of 32bit full adder 
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Fig.30Transient response of chip temperature 
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Fig.31Average of relative delay vs. # of cells (Ref.12) 
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Fig.32Average of relative area vs. number of cells 
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Fig.33Relative synthesis time vs. # of cells. 

TABLE I: Contents of 11-cell CyHP library 
Flip-flops D-FF x1, D-FF x2 
Inverters INV x1, INV x2, INV x4 
Primitive gates 2-NAND x2 

2-NOR x2 
2-XNOR x1  

Compound 
gates 

2-InvNAND x2 
2-InvNOR x2 

Multiplexer 2-MUXInv x1 

TABLE II: Contents of 20-cell CyHP library 
Flip flops D-FFN x1 
Inverters INV x8, INV x16 
Primitive gates 2-NAND x1 

2-NOR  x1 
3-NAND x1 
3-NOR  x1 

Compound 
gates 

3-AND-NOR x1 
3-OR-NAND x1 

(only cells that not in Table I are listed) 
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Fig.34Power distribution in CMOS LSI's 

(a) CLK is reduced to down to 1V.

(b) Conventional F/F
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Fig.35Reduced Clock Swing Flip-Flop (Ref.13) 
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Fig.36Architectural approach to low-power LSI's 
 

Special
Engine

Homogeneous 
Architecture

(High flexibility)

Heterogeneous Architecture
(System LSI)

(Low-power, more efficient)

MPUMPUMPUMPU

Memory

I/F, Analog

MPUMPUMPUMPU

I/F, Analog

MPUDSP

Memory

 
Fig.37System LSI approach is inherently low-power 

reducing waste 
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Fig.38What sets the technology trend?  Low-power does. 
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