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Abstract

Lowering operating voltage, Vpp, is a key to low-
power CMOS digital VLS's. In order to complete a
certain task in a required time and in order to keep
leakage current within a tolerable level in the low Vpp
designs, Vpp and Vqy control is obligatory. This talk
will cover several of the schemes including multi-Vyy,
variable Vqy, multi-Vpp and variable Vpp to achieve
low-power systems. Circuit level ideas to software
related research are described.

1. Introduction

Power consumption of the VLSI's has been ever
increasing (Fig.1) and a VLS| processor dissipating
more than 100W has been introduced. A roadmap is
suggesting even more power increase in the future with
the supply voltage less than 0.5V (Fig.2). Thus, low-
power and low-voltage designs are and will continue to
be important for further progress of VLSI's.

2. Power consumption of CMOSVLSI's

The expression for power consumption is shown in
Fig.3. The crowbar current component (or short-circuit
current component) is less than 10% of total active
power at present and will be decreasing in the future
when V1u/Vpp is increased (Fig.4-7). Consequently,
the charging and discharging current component is
dominant in an active mode and in a standby mode,
leakage current component dominates. In the leakage
components, subthreshold current is dominant now but
gate tunneling current and gate induced drain leakage
should be considered in the future. In calculating the
dynamic current component, the voltage dependent gate
capacitance should be watched out for (Fig. 8, 9).

Using typical values, power and delay are calculated
for various Vpp and V14 in Figs. 10 and 11. In order to
reduce the power, it is preferable to decrease Vpp but

decreasing Vpp leads to the decrease of performance.
When we reduce Vpp, if we reduce V1 at the same
time, it is possible to maintain the speed of circuits.
Then, the issue is the increase of the subthreshold
leakage in the low-V 1y region. This is the reason why
some Vpp-Vr4 control is needed to achieve low-power
yet high-speed circuits.

3. Multi-Vt4, Variable V14, Multi-Vpp
and Variable Vpp

Using two V14's (MTCMOS) is one idea to take the
trade-off between the speed in an active mode and the
leakage in a standby mode (Fig.12). The other idea is
to vary the V14 dynamically using substrate bias effect,
namely VTCMOS, which has been also pursued and
productized [8, 9] (Fig.13-15). The comparison of
VTCMOS and MTCMOS is tabulated in Fig. 16.
MTCMOS is conceptualy simple and easy to
implement and VTCMOS is better performance-wise.
MTCMOS is definitely one way but does not operate
properly when Vpp decreases below 0.5V. To
overcome this shortcoming, Super Cut-off CMOS
(SCCMOS) is proposed (Fig.17-20). By over-driving
the MOS gate in a standby mode, it is possible to
completely cut off the leakage current of low-Viy
MOSFET's. The original MTCMOS and VTCMOS are
applicable to logic part of the design but are not
applicable to low-voltage SRAM's. If MTCMOS is
applied to an SRAM, the stored information islost in a
standby. On the other hand, if VTCMOS is applied to
an SRAM with low-V+y memory cells for high-speed
purpose, the leakage current in an active mode is
enormous. A possible solution to this problem is row-
wise selective biasing asis shownin Fig.21.

A multiple-voltage scheme known as Dua-VS
scheme is shown in Figs. 22 and 24, where critical
paths are driven with higher Vpp, while non-critical
gates are operated under low Vpp. An example of
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variable Vpp approach called software feedback loop is
shown in Figs.25-26. Making use of data
dependency, an order of magnitude reduction of
power is possible with the scheme. This is a
hardware-software cooperative approach for low
power.

When using sub-0.5V Vpp and low-V1y, watch out
for the positive temperature dependence of speed
(Fig.27-29). Thermal instability may occur when
improper package is used (Fig.30). In introducing new
circuit concept, layout modification of standard cell
library is needed sometimes. It has been shown,
however, small number of cells are sufficient in a
library to achieve high performance (Fig.31-33, Tablel,

).
4. Other low-power approaches

Power consumption of a clock system in a digita
VLS is comparable to the power consumed in other
logic gates (Fig.34). In order to reduce the power for
clocking, reduced swing clock scheme with special flip-
flops has been proposed (Fig.35). In an architectural
level, a system LS| approach shows lower power than a
general processor approach at the sacrifice of generality
and historically low-power has set the technology trend
(Fig.36-38).
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TABLE I: Contents of 11-cell CyHP library

Flip-flops D-FF x1, D-FF x2
Inverters INV x1, INV X2, INV x4
Primitive gates | 2-NAND x2

2-NOR x2

2-XNOR x1
Compound 2-InvNAND x2
gates 2-InvNOR x2
Multiplexer 2-MUXInv x1

TABLE II: Contents of 20-cell CyHP library

Flip flops D-FFN x1
Inverters INV x8, INV x16
Primitive gates | 2-NAND x1
2-NOR x1
3-NAND x1
3-NOR x1
Compound 3-AND-NOR x1
gates 3-OR-NAND x1

(only cellsthat not in Table | are listed)

Fig.34Power distributionin CMOS LSI's
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