ADMETA 2000 '00/10

Interconnection from Design Perspective

Takayasu Sakurai

Center for Collaborative Research and Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo, 106-8558 Japan Phone: +81-3-3402-6226, Fax +81-3-3402-6227

> E-mail:tsakurai@iis.u-tokyo.ac.jp http://www.low-power.u-tokyo.ac.jp

Moore's Law

Scaling Law

Transistors		Scaling coefficients			
V _{DD}	[V]		1/k		
Tr. dimensions	[x]		1/k		
Drain current	[I~1/x x/x V^1.3]		1/k ^{0.3}		
Gate capacitance	[C~1/x xx]	1/k			
Tr. delay	[d~CV/I]		1/k ^{1.7}		
Tr. power	[P~VI~CVV/d]		1/k ^{1.3}		
Power density	[p~P/x/x]		k ^{0.7}		
Tr. density	[n~1/x/x]		k ²		
Interconr	nects				
Туре		Local	Global		
Scaling scenario					
Scaling s	scenario	Scaled	Anti-scaled		
Scaling s Line thickness	scenario [T]	Scaled 1/k	Anti-scaled k		
Scaling s Line thickness Width	scenario [T] [W]	Scaled 1/k 1/k	Anti-scaled k k		
Scaling s Line thickness Width Separation	scenario [T] [W] [S]	Scaled 1/k 1/k 1/k	Anti-scaled k k k		
Scaling s Line thickness Width Separation Oxide thickness	scenario [T] [W] [S] [H]	Scaled 1/k 1/k 1/k 1/k	Anti-scaled k k k 1		
Scaling s Line thickness Width Separation Oxide thickness Length	scenario [T] [W] [S] [H] [L]	Scaled 1/k 1/k 1/k 1/k 1/k 1/k	Anti-scaled k k k 1 1		
Scaling s Line thickness Width Separation Oxide thickness Length Resistance	scenario [T] [W] [S] [H] [L] [R _{INT} ~L/W/T]	Scaled 1/k 1/k 1/k 1/k 1/k k	Anti-scaled k k k 1 1 1 1/k ²		
Scaling s Line thickness Width Separation Oxide thickness Length Resistance Capacitance	Scenario [T] [W] [S] [H] [L] [R _{INT} ~L/W/T] [C _{INT} ~L/W/H]	Scaled 1/k 1/k 1/k 1/k 1/k k 1/k	Anti-scaled k k 1 1 1/k ² k		
Scaling s Line thickness Width Separation Oxide thickness Length Resistance Capacitance RC delay/Tr. delay	Scenario [T] [W] [S] [H] [L] [R _{INT} ~L/W/T] [C _{INT} ~L/W/H] [D~R _{INT} C _{INT} /d]	Scaled 1/k 1/k 1/k 1/k k 1/k k 1/k k	Anti-scaled k k k 1 1 1/k ² k -		
Scaling s Line thickness Width Separation Oxide thickness Length Resistance Capacitance RC delay/Tr. delay Current density	scenario [T] [W] [S] [H] [L] [R _{INT} ~L/W/T] [C _{INT} ~L/W/H] [D~R _{INT} C _{INT} /d] [J~pWL/V /W/T]	Scaled 1/k 1/k 1/k 1/k k 1/k k 1/k k ^{1.7} -	Anti-scaled k k k 1 1 1/k ² k - k^{0.7}		

T.Sakurai&A.Newton,"Alpha-power law MOSFET model and its application to CMOS inverter delay and other formulas",IEEE JSSC, vol25, no,2, pp.584-594, Apr. 1990.

Scaling Law

Size	x1/2
Voltage	x1/2
Electric Field	x1
Speed	x3
Cost	x1/4

Unfavorable effects				
Power density	x1.6			
RC delay/Tr. delay	x3.2			
Current density	x1.6			
Voltage noise	x3.2			
Design complexity x4				

Three crises in VLSI designs

- Power crisis
- Interconnection crisis
- Complexity crisis

Interconnect determines cost & perf.

P: Power, D: Delay, A: Area, T:Turn-around

DSM interconnect design issues

Larger current

IR drop (static and dynamic) Reliability (electro-migration)

Smaller geometry / Denser pattern

RC delay Signal Integrity Crosstalk noise Delay fluctuation

Higher speed Inductance EMI

VDD, Power and Current Trend

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA)

IR Drop

Interconnect Cross-Section and Noise

- Clock
- Long bus
- Power supply

Scaled interconnect
 Signal

1V 20W \rightarrow 20A current 2% noise on VDD & VSS \rightarrow ~0.02V / 20A \rightarrow ~10µm thick Cu Thick layer interconnect, area pad, package are co-designed.

Interconnect parameters trend

Semiconductor Industry Association roadmap http://notes.sematech.org/1997pub.htm

RC delay and gate delay

RC delay of global interconnections

Repeaters

Delay and Power Optimization for Repeaters

Delay optimized

→P: P(repeater)=0.60 P(interconnect) <u>Power•Delay optimized</u>

- →D: 1.09 Dopt
- \rightarrow P: P(repeater)=0.26 P(interconnect)
- \rightarrow PD: 0.86 of Dopt case

Buffered interconnect delay

Capacitive Coupling Noise

Coupling noise in RC bus

H.Kawaguchi and T.Sakurai, "Delay and Noise Formulas for Capacitively Coupled Distributed RC Lines," ASPDAC, Digest of Tech. Papers, pp.35-43, Feb. 1998.

Coupling among Interconnections

H.Kawaguchi and T.Sakurai, "Delay and Noise Formulas for Capacitively Coupled Distributed RC Lines," 1998 ASPDAC, Digest of Tech. Papers, pp.35-43, Feb. 1998.

Coupling among Interconnections

Coupling among Interconnections

Inductance?

- Now RC effects surmounts LC effects because R > |jωL|.
- In the future, both of R and ωL increase (R increases more rapid?).
- Exception in low-R lines
- Inductive effects in wide clock lines in a fast processor are claimed to be observed in simulation.
- Clock lines are placed on power plane to reduce inductive effects.
- [1] D.A.Priore, "Inductance on Silicon for Sub-micron CMOS VLSI," Symp. on VLSI Circuits, 1993.

Inductive Effects

Inductive Effects in Clock Lines

Board design practice is imported in LSI.

H-tree clock distribution

M.Mizuno, K.Anjo, Y.Sumi, H.Wakabayashi, T.Mogami, T.Horiuchi, M.Yamashina, "On-Chip Multi-GHz Clocking with Transmission Lines," ISSCC, pp.366-367, Feb. 2000

System on a Chip (SoC)

Re-use and sharing of design Design in higher abstraction

IP ; CPU, DSP, memories, analog, I/O, logic.. HW/FW/SW

Issues in System-on-Chip

- Un-distributed IP's (i.e. CPU, DSP of a certain company)
- Huge initial investment for masks & development
- IP testability, upfront IP test cost
- Process-dependent memory IP's
- Difficulty in high precision analog IP's due to noise
- Process incompatibility with non-Si materials and/or

MEMS

System in Package

- Smaller area
- Shorter interconnect
- Optimized process for each die (Analog, DRAM, MEMS...)
- Good electrical isolation
- Through-chip via
- Heat dissipation is an issue

Silicon MEMS microphone

Will soon exceed the performance of the best commercial microphones, yet be inexpensive and potentially integrated with on-chip electronics.

M.Pinto, "Atoms to Applets: Building Systems ICs in the 21st Century," ISSCC, pp.26-30, Feb. 2000.

Technologies integrated on a chip

Super-connect

Nikkei microdevices

Super-connect

LSI in 2014

Year	Unit	1999	2014	Factor
Design rule	μm	0.18	0.035	0.2
Tr. Density	/cm2	6.2M	390M	30
Chip size	mm2	340	900	2.6
Tr. Count per chip (µP)		21M	3.6G	170
DRAM capacity		1G	1T	1000
Local clock on a chip	Hz	1.2G	17G	14
Global clock on a chip	Hz	1.2G	3.7G	3.1
Power	W	90	183	2.0
Supply voltage	V	1.5	0.37	0.2
Current	Α	60	494.6	8
Interconnection levels		6	10	1.7
Mask count		22	28	1.3
Cost / tr. (packaged)	µcents	1735	22	0.01
Chip to board clock	Hz	500M	1.5G	3.0
# of package pins		810	2700	3.3
Package cost	cents/pin	1.61	0.75	0.5

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA), International Technology Roadmap for Semiconductors: 1999 edition. Austin, TX:International SEMATECH, 1999.