
Coupling-Driven Bus Design for Low-Power

Application-Specific Systems

Youngsoo Shin and Takayasu Sakurai

Center for Collaborative Research and Institute of Industrial Science,

University of Tokyo, Tokyo 106-8558, Japan

Abstract

In modern embedded systems including communication and multimedia applications, large frac-

tion of power is consumed during memory access and data transfer. Thus, buses should be de-

signed and optimized to consume reasonable power while delivering sufficient performance. In

this paper, we address bus ordering problems for low-power application-specific systems. A

heuristic algorithm is proposed to determine the order in a way that effective lateral component

of capacitance is reduced, thereby reducing the power consumed by buses. Experimental results

for various examples indicate that the average power saving from 30% to 46.7% depending on

capacitance components can be obtained without any circuit overhead.

1 Introduction

As the scale of process technologies steadily shrinks and the size of designs increases, inter-

connects (especially global interconnects) have increasing impact on the area, delay, and power

consumption of circuits [1]. Specifically, reduction in scale causes the lateral component of

capacitance to dominate the total capacitance of interconnects. This is because wire-to-wire

spacing is shrinking for higher densities and the aspect ratios of interconnects have to be in-

creased to compensate for increasing interconnect resistance, which in turn is due to shrinking

wire widths. For example of metal 3 layer in typical 0.35 µm CMOS process, the lateral com-

ponent of capacitance reaches 5 times the sum of fringing and vertical components when the

substrate serves as a bottom plane.

In the domain of embedded systems, an increasing fraction of implementations make use of

core processors as basic computational units. In these systems, especially in communication and

multimedia applications, large fraction of power is consumed during memory access and data

transfer. Thus, system bus, which is an essential system component to interconnect subsystems

for data transfer, should be designed and optimized to consume reasonable power while provid-

ing sufficient performance. Although there has been significant work devoted to reduce power

consumption of off-chip buses with coding techniques [2], [3], [4], the overhead of coding logic

in terms of delay, area, and power cannot be tolerated if the same techniques are to be used for

on-chip buses [5]. Furthermore, the effects from lateral component of capacitance should be

taken into account when on-chip buses in deep submicron technologies are of concern.

In this paper, we propose a low-power on-chip bus design technique for embedded application-

specific systems, which takes the lateral as well as vertical and fringing components of capac-

itance into consideration. Specifically, we are given a processor core and the embedded appli-

cation that runs on it. We assume that capacitance components of buses are available from the

layout of the processor core and the address streams from typical runs of the application code.

The sequence of the address patterns can be available a priori after the algorithm of an applica-

1

tion is specified such as in signal and image processing applications. Based on the capacitance

components and the address streams, we determine the optimal order of the bus in such a way

that power consumption of the bus is minimized. The rationale for ordering is that the effective

lateral capacitance is reduced if bus lines, with high probability of switching in the same direc-

tion, are located adjacent to each other. The obtained order can be used to slightly modify the

processor layout without any circuit overhead.

We present the power model, which incorporates all the capacitance components, and define

a bus ordering problem. Then, we propose a heuristic algorithm to determine the bus order.

Note that the optimal order can be obtained only if the bus is narrow and the length of address

streams is small, which are not the case for most of embedded applications. We also evaluate

the proposed heuristic algorithm by comparing it with the simulated annealing algorithm.

The remainder of the paper is organized as follows. In the next section, we present a power

model and the definition of a problem followed by a heuristic algorithm. In Section 3, we present

results of experiments for several examples, and in Section 4 we draw conclusions.

2 Coupling-Driven Bus Design

2.1 Power Model and Problem Definition

We are given a bus B=(b0;b1; : : : ;bn�1), which transfers a sequence of patterns Bi =(bi
0;bi

1; : : : ;bi
n�1),

where i is the time index, n is the bus width, and bi
j is the value of a bus line b j at time i. We shuf-

fle bus lines in B such that effective load capacitances seen from driving ends are minimized.

Note that if load capacitances are constant, which is the case when there are only vertical ca-

pacitance components, the shuffling has no effects with respect to dynamic power consumption,

which is a dominant source of power dissipation in a digital CMOS circuit. However, because

of lateral capacitance components, the load capacitances are not constant but depend on signal

transitions of neighboring wires.

Figure 1 shows parasitic capacitances involved with adjacent bus lines. Cc denotes a lateral

2

CcCc

CaCf Cf

Bottom plane

Figure 1. Parasitic capacitances with adjacent lines.

component between electromagnetically coupled lines. Ca and Cf denote the vertical and fring-

ing components, respectively, between a metal line and a bottom plane. We denote the sum of

Ca and 2Cf as Cl . The ratio between Cc and Cl is denoted by

η =
Cc

Cl
: (1)

The effect of lateral capacitance (Cc) is that total load capacitance seen by a gate is no longer a

constant value, but depends on signal activities of neighboring lines due to the Miller effect [6].

Assume that the physical lateral capacitance between two neighboring lines, bi and bi+1, is

Cc. The Miller effect states that if two lines switch in opposite directions, the effective lateral

capacitance between them is 2Cc because the effective voltage swing between them is doubled.

On the contrary, the effective lateral capacitance becomes 0 if both lines switch in the same

direction.

In a digital CMOS circuit, the dynamic power is proportional to load capacitance and switch-

ing activity. Thus, if load capacitance is constant, power consumption is proportional to the

number of transitions. In other words, if we have two sets of patterns with the same width and

length to be transferred on the same bus, we can compare the power consumption of the bus

from each set by comparing the number of transitions. In order to take a similar approach when

we incorporate the effect of Cc as well as Cl , we first define the switching encoding for j-th bus

line as

si
j =

8>>>><
>>>>:

1; if bi�1
j = 0 and bi

j = 1

�1; if bi�1
j = 1 and bi

j = 0

0; otherwise.

(2)

If η = 0, we can readily obtain the total number of bus transitions by summing jsi
jj over j and i.

3

However, if η 6= 0, we should take switching polarities of adjacent lines into account to include

the effect of Cc. For this purpose, we define the switching similarity between adjacent lines (j-th

and k-th) at time i, denoted by ζ i(j;k), as the amount of effects from Cc seen from j-th line

(thus, ζi(k; j) is different from ζi(j;k)). For example, if two lines make transitions in opposite

directions at time i, ζ i(j;k) = 2. Then, it can be readily shown that ζ i(j;k) is given by

ζi(j;k) = jsi
jj(2�jsi

j+ si
kj): (3)

Now, we define the effective bus transition of b j at time i, denoted by α i
j, as the measure of

effective transitions induced both from Cl and Cc, which is normalized to transitions considering

only Cl . It can be expressed by

αi
j =

8>>>><
>>>>:

jsi
jj(1+ηζ i(j; j+1)); if j = 0

jsi
jj(1+ηζ i(j; j�1)); if j = n�1

jsi
jj(1+η (ζi(j; j�1)+ ζi(j; j+1))); otherwise.

(4)

Based on the effective bus transitions, our problem of bus ordering can be defined as follows:

� Given η and a bus B=(b0;b1; : : : ;bn�1), which transfers a sequence of patterns Bi =

(bi
0;bi

1; : : : ;bi
n�1),

� Find the shuffled bus B̃ that minimizes the sum of α i
j over j and i.

2.2 Coupling-Driven Bus Ordering Algorithm

Because of the exponential number of alternatives for B̃ (n! alternatives for n-b wide bus), the

optimal one can be obtained only when the width of bus is narrow and the number of patterns is

small, which are not the case for most of embedded applications. In this subsection, we propose a

heuristic algorithm based on both switching correlation and transition probability. The switching

correlation coefficient or simply switching correlation for two bus lines (j-th and k-th) is defined

by

ρ jk =
Kjk

σ jσk
; (5)

4

Ordering bus lines

Compute transition probability (pj) of each line;

Compute switching correlation (ρjk) of each pair of lines;

Find a set of shielding lines S fbj jpj < ξg;

R fb0;b1; : : : ;bn�1g�S;

Ψ build-clusters(R; pj; ρ jk);

f g arrange-clusters(Ψ, S);

Figure 2. Heuristic algorithm for bus ordering.

where σ j is the standard deviation of s j defined in (2). Kjk is the covariance of s j and sk and

defined by

Kjk = Efs jskg�m jmk; (6)

where Efxg is the expected value of x and m j is the mean of s j.

The heuristic algorithm is outlined in Figure 2. Initially, we group bus lines with relatively low

transition probability (below some threshold, ξ). These lines serve as shielding lines between

clusters. The remaining bus lines are subdivided into a group of ordered sets, called clusters.

The clusters and a set of shielding lines are ordered to result in the final order. Note that orders

of lines in each cluster is fixed once each cluster is built, except of the possibility of conditional

reverse.

The heuristic to group bus lines into a set of clusters is shown in Figure 3. For each cluster,

we first select the line with the highest transition probability among lines not selected and then

build a new cluster. At each iteration of inner while loop, we select a line (bk) that maximizes the

switching correlation between bk and the first or the last element of a cluster (recall that cluster

is an ordered set) under consideration. This continues until there are no candidate lines having

positive switching correlation with the first or the last element of a cluster. In this way, each

cluster is formed in such a way that lines with high transition probabilities and high switching

correlations are more likely to be grouped together, thereby reducing the effective lateral capac-

5

build-clusters(R; pj ; ρ jk)

while R not empty do

Select bj 2 R such that pj is maximum, and R R�fbjg;

Form a new cluster Ψi fbjg;

while true do

Find bk 2 R maximizing ρkl > 0, where bl is the first or the last element of Ψi;

If bk is not found then exit loop; end if

If bl is the first element of Ψi then Ψi fbkg[Ψi;

else Ψi Ψi[fbkg; end if

end do

Ψ Ψ[Ψi;

end do

return Ψ;

Figure 3. Heuristic algorithm for clustering.

itances. Furthermore, lines located at both ends of each cluster have relatively low transition

probabilities that also contributes toward reducing the effective lateral capacitances, which is to

be clarified in Figure 4.

From a set of clusters and a set of shielding lines, the final order of bus lines is determined

by the heuristic algorithm as shown in Figure 4. First, we select two clusters to be located at

both ends of the final order. Because the lines to be located at both ends of the final order

will have only one lateral capacitances, they should be lines with high transition probabilities.

Then, the remaining clusters are located sequentially with shielding lines between each cluster.

Because clusters are built in a way that any combination of two clusters results in negative

switching correlation between lines located in the boundaries of clusters (see Figure 3), locating

a shielding line in-between clusters decreases the effective lateral capacitances.

6

arrange-clusters(Ψ, S)

Select Ψl 2Ψ such that p(Ψl) is maximum, and Ψ Ψ�Ψl ;

Select Ψr 2Ψ such that p(Ψr) is maximum, and Ψ Ψ�Ψr;

if the first element of Ψl has p(Ψl) then F Ψl ;

else F reverse(Ψl); end if

foreach Ψi 2Ψ do

Ψ Ψ�Ψi, and F F [Ψi;

Select bi 2 S, S S�fbig, and F F [fbig;

end do

if S is not empty then F F [S; end if

if the last element of Ψr has p(Ψr) then F F [Ψr ;

else F F [reverse(Ψr); end if

return F;

Figure 4. Heuristic algorithm to find the final order. p(Ψi) is the maximum of transition

probabilities of the first and the last element of Ψi. reverse(Ψi) reverses the order of ele-

ments of Ψi.

3 Experimental Results

To evaluate the efficiency of the proposed algorithm, we perform experiments for the follow-

ing set of sample patterns:

� wavelet, linear, laplace, compress, and lowpass: data address patterns in bench-

mark examples collected from typical image or signal processing algorithms [7]. We

assume 16-b wide data address buses for all the programs. Patterns are extracted with the

help of Shade [8].

� fft: 7-b wide data address patterns between 128-point complex fft processor of an audio

decoder [9] and memory. Patterns are extracted through VHDL simulation.

7

0

10

20

30

40

50

60

70

80

90

100

wavelet linear laplace compress lowpass fft ac3
%

 s
av

in
g

eta=1
eta=2
eta=3
eta=4
eta=5
eta=infinity

Figure 5. Percentage saving with heuristic algorithm.

� ac3: 16-b wide data address patterns between memory and parser processor of the audio

decoder, which reads input data stored in a frame memory. Patterns are extracted through

VHDL simulation.

We assume that Cc and Cl are constants over all bus lines, and perform experiments with η =

1;2;3;4;5;∞. The resulting percentage saving in power with the proposed heuristic algorithm

is shown in Figure 5. Figure 6 corresponds to the result after ordering is done using simulated

annealing (SA)1 [10] instead of the heuristic algorithm, which gives an idea of how good the

solutions obtained by the proposed heuristic algorithm are. However, SA itself can be used

instead of the proposed heuristic algorithm when the bus width and length is of reasonable

size. We also obtain the optimal order for fft, which is 7-b wide and consists of 782 patterns.

Interestingly, the result is the same as that obtained with SA.

The results of the average percentage saving with the heuristic algorithm are compared to

those of SA in Figure 7. The heuristic algorithm gives 30% on the average when η = 1 up to

46.7% when η is infinity. The difference between heuristic algorithm and SA ranges from 1.9%

to 4.4%.
1Two kinds of moves are used. One is one-to-one exchange between randomly selected two bus lines. Another is group-to-

group exchange between randomly selected two groups of bus lines. The move itself is chosen randomly.

8

0

10

20

30

40

50

60

70

80

90

100

wavelet linear laplace compress lowpass fft ac3
%

 s
av

in
g

eta=1
eta=2
eta=3
eta=4
eta=5
eta=infinity

Figure 6. Percentage saving with simulated annealing algorithm.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

%
 s

av
in

g

heuristic
sa

η
∞

Figure 7. Comparison of heuristic algorithm and simulated annealing.

4 Conclusion

In this paper, we address on-chip bus design technique targeting low-power application-

specific systems. In the proposed scheme, we shuffle bus lines in order to minimize the number

of effective bus transitions, which includes effects from both lateral and vertical capacitance

components, thereby minimizing the power consumed by on-chip buses. We present a heuris-

tic algorithm of shuffling bus lines. The proposed scheme is particularly suitable for address

buses in memory-intensive application-specific systems. Experimental results show that savings

are substantial for benchmark examples and a large example such as an audio decoder. The

performance of the proposed heuristic algorithm is compared to that of simulated annealing.

9

References

[1] M. T. Bohr, “Interconnect scaling – the real limiter to high performance ULSI,” in Proc.

IEEE Int’l Electron Devices Meeting, Dec. 1995, pp. 241–244.

[2] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,” IEEE Trans. on

VLSI Systems, vol. 3, no. 1, pp. 49–58, Mar. 1995.

[3] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “A coding framework for low-power address

and data busses,” IEEE Trans. on VLSI Systems, vol. 7, no. 2, pp. 212–221, June 1999.

[4] L. Benini, G. De Micheli, E. Macii, M. Poncino, and S. Quer, “System-level power opti-

mization of special purpose applications: The Beach Solution,” in Proc. Int’l Symposium

on Low Power Electronics and Design, Aug. 1997, pp. 24–29.

[5] P. Sotiriadis and A. Chandrakasan, “Low power bus coding techniques considering inter-

wire capacitances,” in Proc. IEEE Custom Integrated Circuits Conf., May 2000, pp. 507–

510.

[6] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley, 1990.

[7] P. Panda and N. Dutt, “1995 high level synthesis design repository,” in Proc. Int’l Sympo-

sium on System Synthesis, 1995.

[8] R. Cmelik and D. Keppel, “Shade: A fast instruction-set simulator for execution profiling,”

Tech. Rep. TR-93-12, Sun Microsystems Laboratories, 1993.

[9] S. Lee and W. Sung, “A parser processor for MPEG-2 audio and AC-3 decoding,” in Proc.

Int’l Symposium on Circuits and Systems, June 1997, pp. 2621–2624.

[10] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”

Science, vol. 220, no. 4598, pp. 671–680, May 1983.

10

