^{ニューガラスフォーラム '00/9} エレクトロニクス産業の将来技術 ー シリコンLSIを中心に ー

Prof. Takayasu Sakurai Center for Collaborative Research, and Institute of Industrial Science, University of Tokyo E-mail:tsakurai@iis.u-tokyo.ac.jp

- 1 産業を取り巻く環境
- 2 消費電力の危機
- 3 配線の危機
- 4 複雑さの危機
- 5 将来展望

Silicon Age

World-Wide Semiconductor Market

World semiconductor market

日本の半導体市場

日本の製品別 半導体市場規模(円ベース)

地域別半導体メーカシェア

Moore's Law

微細加工技術の進展

System LSI for Next Generation Games

- Clock freq. 300MHz
- 10M transistors
- Graphics synthesizer integrate
 40M tr. With embedded DRAM
- Memory bandwidth 3.2GB/s
- Floating operation 6.2GFLOPS/sec
- 3D CG 6.6M polygon/sec
- MPEG2 decode

Limit of Miniturization

Conventional I-V curve at 0.04µm (Even down to 0.014µm)

M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai, "Sub-50nm gate Length N-MOSFETs with 10 nm Phosphorus Source and Drain Junctions", IEDM Technical Digest, pp. 119 -122, 1993.

H. Kawaura, T. Sakamoto, Y. Ochiai, J. Fujita, and T. Baba, "Fabrication and Characterization of 14-nm-Gate-Length EJ-MOSFETs", Extended Abstracts of SSDM, pp.572-573, 1997.

Scaling Law

Favorable effects

Size	x1/2
Voltage	x1/2
Electric Field	x1
Speed	x3
Cost	x1/4

Unfavorable effects				
Power density	x1.6			
RC delay/Tr. delay	x3.2			
Current density	x1.6			
Voltage noise	x3.2			
Design complexity x4				

Three crises in VLSI designs

- Power crisis
- Interconnection crisis
- Complexity crisis

Ever Increasing VLSI Power

(Power consumption of processors published in ISSCC)

VDD, Power and Current Trend

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA)

IT from anywhere by anybody

Low-power and wireless are the keys

Cell phone Tecketing Reservation

Home automation

Game on net Entertainment Computer centric Communication centric, Display centric

Performance Requirements for Multimedia

What sets the technology trend?

Power & Delay Dependence on V_{DD} & V_{TH}

Measurement of 32bit full adder

Photograph of 32bit FA 0.3μm CMOS

K.Kanda, K.Nose, H.Kawaguchi, and T.Sakurai,"Design Impact of Positive Temperature Dependence of Drain Current in Sub 1V CMOS VLSI's",CICC99, pp.563-566, May 1999.

Transient response of chip temperature

Better package is needed to avoid thermal runaway in low voltage.

K.Kanda, K.Nose, H.Kawaguchi, and T.Sakurai,"Design Impact of Positive Temperature Dependence of Drain Current in Sub 1V CMOS VLSI's",CICC99, pp.563-566, May 1999.

Ultra Low-Voltage Operation

(Stanford Univ.)

J.Burr&J.Shott,"A 200mV Self-Testing Encoder/Decoder using Stanford Ultra-Low-Power CMOS", ISSCC94, pp.84-85.

Homogeneous vs. Heterogeneous

DRAM Embedding

DRAM Processor

System LSI

K.Sawada, T.Sakurai, et al, "A 72K CMOS Channelless Gate Array with Embedded 1Mbit Dynamic RAM," in Proc. CICC'88, pp.20.3.1-20.3.4, May 1988.

Two orders of magnitude improvement in bandwidth and power

DRAM混載

トランジスタ

DRAMのメモリセル

- ・異なる技術を結合
- ・テストはBISTを活用
- ・自動モジュールジェネレータ

Future trend of N_{LOGIC} and N_{MEMORY}

Application slicing and software feedback loop in Voltage Hopping

S.Lee and T.Sakurai, "Run-time Power Control Scheme Using Software Feedback Loop for Low-Power Real-time Applications,"ASPDAC'00, A5.2, pp.381~pp.386, Jan. 2000. S.Lee and T.Sakurai, "Run-time Voltage Hopping for Low-power Real-time Systems," DAC'00, June 2000.

Run-time Voltage Hopping reduces power to less than 1/10

Modified Clock

Transient voltage waveform

Three crises in VLSI designs

- Power crisis
- Interconnection crisis
- Complexity crisis

Complex interconnect

Advances in interconnection technology

Interconnection in 1985

Interconnection in 1998

Interconnect determines cost & perf.

P: Power, D: Delay, A: Area, T:Turn-around

Interconnect parameters trend

Semiconductor Industry Association roadmap http://notes.sematech.org/1997pub.htm

RC delay and gate delay

RC delay of global interconnections

Buffered interconnect delay

Coupling among Interconnection

Interconnect Cross-Section and Noise

- Clock
- Long bus
- Power supply

Signal

1V 50W -> 50A current

5% noise -> 0.05V noise -> $1m\Omega$ sheet R -> 15µm thick Cu Area pad + package, or thick layer on board is needed.

Three crises in VLSI designs

- Power crisis
- Interconnection crisis
- Complexity crisis

VLSI Design in 2010

Complexity vs. Productivity

System LSI design complexity increases faster than productivity. (http://notes.sematech.org/97melec.htm)

Overcome complexity crisis

Re-use and sharing of design
Design in higher abstraction

IP ; CPU, DSP, memories, analog, I/O, logic.. HW/FW/SW

Issues in System-on-Chip

- Un-distributed IP's (i.e. CPU, DSP of a certain company)
- Huge initial investment for masks & development
- IP testability, upfront IP test cost
- Process-dependent memory IP's
- Difficulty in high precision analog IP's due to noise
- Process incompatibility with non-Si materials and/or

MEMS

Super-connect

System-in-Package (SIP)

K.L.Tai, "System-In-Package (SIP): Challenges and Opportunities," ASPDAC, pp.191-196, Jan. 2000

3-Dimensional assembly

- Smaller area
- Shorter interconnect
- Optimized process for each die (Analog, DRAM, MEMS...)
- Good electrical isolation
- Through-chip via
- Heat dissipation is an issue

Micro-machined mechanical switch

G.Weinberger, "The New Millennium: Wireless Technologies for a Truly Mobile Society," ISSCC, pp.20-24, Feb. 2000.

Silicon MEMS motor

マイクロマシン技術で作った0.1ミリのモーター 東京大学、生産技術研究所、藤田博之教授提供

Silicon MEMS microphone

Will soon exceed the performance of the best commercial microphones, yet be inexpensive and potentially integrated with on-chip electronics.

M.Pinto, "Atoms to Applets: Building Systems ICs in the 21st Century," ISSCC, pp.26-30, Feb. 2000.

DRAM製造設備投資

LSI in 2014

Year	Unit	1999	2014	Factor
Design rule	um	0 18	0.035	0.2
Tr. Density	/cm2	6.2M	390M	30
Chip size	mm2	340	900	2.6
Tr. Count per chip (µP)		21M	3.6G	170
DRAM capacity		1G	1 T	256
Local clock on a chip	Hz	1.2G	17G	14
Global clock on a chip	Hz	1.2G	3.7G	3.1
Power	W	90	183	2.0
Supply voltage	V	1.5	0.37	0.2
Current	Α	60	494.6	8
Interconnection levels		6	10	1.7
Mask count		22	28	1.3
Cost / tr. (packaged)	µcents	1735	22	0.01
Chip to board clock	Hz	500M	1.5G	3.0
# of package pins		810	2700	3.3
Package cost	cents/pin	1.61	0.75	0.5

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA), International Technology Roadmap for Semiconductors: 1999 edition. Austin, TX:International SEMATECH, 1999.

Possible electronic system in 2014

- Sensors/actutors
- 0.035µm 3.6G Si FET's with VTH & VDD control
- Locally synchronous 17GHz clock, globally asynchronous
- Chip / Package / Board system co-design for power lines, clocks, and long wires (superconnect)

Prosthesis - Dual Intraocular Units

Courtesy: Prof. Wentai Liu (North Carolina Univ.) http://www.ece.ncsu.edu/erl/faculty/wtl_data/retina.html

Electrodes Array

NC STATE UNIVERSITY

- Bio-Compatible not toxic to neurons
- Large amount of current without causing irreversible electrochemical reactions
 - 400 uC/cm² for Platinum and 3 mC/ cm² for Iridium
- Not dissolve as a result of simulation
- Two metal meet the above demands Platinum and Iridium
- Substrate for array Silicone, Silicon, Polyimide, etc

Platinum (5x5) on Silicone by Janusz

Retinal Prosthesis

Chip + Electrode Array on Polyimide

NC STATE UNIVERSITY

Courtesy: Prof. Wentai Liu (North Carolina Univ.) http://www.ece.ncsu.edu/erl/faculty/wtl_data/retina.html

Cochlear Implants

NC STATE UNIVERSITY

- 22 Electrodes
- Spatially Attached at Cochlear (low pitch sound at the apex)
- Power and Signals by Carrier Radio Frequency

Retinal Prosthesis