セミコン関西2000 ULSI技術セミナー '00/6/2

設計からみた低消費電力· 高速化技術

東京大学、国際・産学共同研究センター、生産技術研究所 桜井貴康 E-mail:tsakurai@iis.u-tokyo.ac.jp

Device / circuit collaboration: dual-oxide BGMOS Circuit / software collaboration: voltage hopping Architectural approaches

Ever increasing VLSI power

(Power consumption of processors published in ISSCC)

V_{DD}, power and current trend

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA)

Power & delay dependence on V_{DD} & V_{TH}

Controlling V_{DD} and V_{TH} for low power

Low power \rightarrow Low $V_{DD} \rightarrow$ Low speed \rightarrow Low $V_{TH} \rightarrow$ High leakage $\rightarrow V_{DD}$ - V_{TH} control

- Multiple V_{TH}
 - Dual-V_{TH}, Multi-Threshold CMOS
- Variable V_{TH}
 - VTCMOS, Substrate bias control
- Multiple V_{DD}
 - Boosted gate MOS, Dual oxide/dual V_{DD}
- Variable V_{DD}
 - Voltage hopping, Software control

T.Sakurai

Variable V_{TH} and Multi- V_{TH}

	Variable VTH		Multi-VTH
Principle	N-well VDDL VDDL VDDL VT VT GND p-well		VDD VDD Low-Vth St'by GND
	Threshold control with sub-bias	On-	off control of internal VDD/VSS
Merit/ Demerit	+ Low leakage in standby		+ Low leakage in standby
	+ Already productized		+ Already productized
	+ Compensate Vth fluctuation		- Compensate Vth fluctuation
	+ IDDQ test		- Idda test
	+ No serial MOSFET		- Large serial MOSFET
			slower, larger, lower yield
	+ Conventional design env.		+ Conventional design env.
	+ Conventional F/F's		- Special F/F's, Two V _{тн} 's
	- Triple well is desirable		- Ultra-low voltage region?
	- Scalability? (junction leakag	e)	- Delay fluctuates on activity
			T.Sakurai

Transistors go leaky

T.Inukai, M.Takamiya, K.Nose, H.Kawaguchi, T.Hiramoto and T. Sakurai, "Boosted Gate MOS (BGMOS): Device/Circuit Cooperation Scheme to Achieve Leakage-Free Giga-Scale Integration," CICC'00, to be published, May 2000.

T.Sakurai

Leak switch optimization

SRAM doesn't accept MTCMOS & VTCMOS

Dual oxide thickness

H.Kawaguchi and K.Nose, T.Sakurai, "A CMOS Scheme for 0.5V Supply Voltage with pico-Ampere Standby Current," 1998 ISSCC, Digest of Tech. Papers, pp.192-193, Feb. 1998.

Delay characteristics (inverter & NAND)

SCCMOS + BGMOS

Measurement of 32bit full adder

Photograph of 32bit FA 0.3µm CMOS

K.Kanda, K.Nose, H.Kawaguchi, and T.Sakurai,"Design Impact of Positive Temperature Dependence of Drain Current in Sub 1V CMOS VLSI's",CICC99, pp.563-566, May 1999.

If you don't need to hussle, V_{DD} should be as low as possible

Voltage hopping for low-power

S.Lee and T.Sakurai, "Run-time Power Control Scheme Using Software Feedback Loop for Low-Power Real-time Applications," ASPDAC'00, A5.2, pp.381~pp.386, Jan. 2000.

S.Lee and T.Sakurai, "Run-time Voltage Hopping for Low-power Real-time Systems," to be published, DAC'00, June 2000.

T.Sakurai

Transient voltage waveform

Transient voltage waveform

T.Sakurai

Homogeneous vs. Heterogeneous

Special Engine

Heterogeneous Architecture (System LSI)

(Low-power, more efficient)

DRAM Embedding

DRAM Processor

System LSI

K.Sawada, T.Sakurai, et al, "A 72K CMOS Channelless Gate Array with Embedded 1Mbit Dynamic RAM," in Proc. CICC'88, pp.20.3.1-20.3.4, May 1988.

Two orders of magnitude improvement in bandwidth and power

T.Sakurai

3-Dimensional assembly

- Smaller area
- Shorter interconnect
- Optimized process for each die (Analog, DRAM, MEMS...)
- Good electrical isolation
- Through-chip via
- Heat dissipation is an issue

Shorter interconnect in 3-D assembly

Drain current model

Optimum V_{DD} and V_{TH}

Problems of scaling scenario (no modification scenario)

In order to maintain $L_d=20$, $V_{DD} > 0.8V$ in 2011.

 N_{CHIP} in 2011 is 70 times larger than N_{CHIP} in 1999.

Calculation of future trend

• Power dissipation in 2011 is 32 times as large as that in 1999 when there is no modifications.

Proposed scaling scenario

Future trend of N_{LOGIC} and N_{MEMORY}

Summary

Device / circuit collaborative approach: Dualoxide Boosted Gate MOS (BGMOS)

Circuit / software collaborative approach: Voltage hopping

- System LSI approach is effective for low-power
- Memory-rich architectures are to be sought.

Prosthesis - Dual Intraocular Units

NC STATE UNIVERSITY

Retinal Prosthesis

Reference for low-power design & System LSI

Low-power high-speed LSI design & technology 「低消費電力、高速LSI技術」 Realize publishing company, ISBN4-89808-004-9 C3055 ¥56000E Phone: +81-3-3815-8511, Fax: +81-3-3815-8529

System LSI – Applications and Technology 「システムLSI―アプリケーションと技術」 Science Forum publishing, ISBN4-916164-30-X C3000 ¥48000E Phone: +81-3-5689-5611, Fax: +81-3-5689-5622