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Design rule, gate length
Gate oxide thickness [nm]
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Limit of Miniturization

0.04um MOSFET | Gate Length =40 nm
— 0.63 vg =20V
0.04pm—>/— g_ I
2 — \/g = 16 \/
E 042
c i
O | vg=12YN
S
O 0.21
-
§ B - Vg =0.8N
a) i
0.0C

00 04 08 12 16 2.0
Drain Voltage [V]

Conventional I-V curve at 0.04um (Even down to 0.014um)

M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. lwai, "Sub-50nm gate Length N-
MOSFETs with 10 nm Phosphorus Source and Drain Junctions", IEDM Technical Digest, pp. 119 -
122, 1993.

H. Kawaura, T. Sakamoto, Y. Ochiai, J. Fujita, and T. Baba, "Fabrication and Characterization of
14-nm-Gate-Length EJ-MOSFETs", Extended Abstracts of SSDM, pp.572-573, 1997.
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Scaling Law

=
= B
=i
]
L]
-1
Im.
-m.
LE ]
w2
(n ]
K

0.2micron Size 1/2
d) SE | @ 3k¥ X 100000
Favorable effects Unfavorable effects

Size x1/2 Power density x1.6
Voltage x1/2 RC delay/Tr. delay x3.2
Electric Field x1 Current density  x1.6
Speed X3 Voltage noise X3.2
Cost x1/4 Design complexity x4
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Three crises in VLSI designs

® Power crisis
® Interconnection crisis

o Complexity crisis

T.Sakurai



Power (W)

Ever Increasing VLSI Power
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Voo, power and current trend
22 N 200 500
Voltage
2 |\ 7 S
o <
=15 = =
<) © c
@) - O
© L =
=1/ N S
O = 0O
> O
s
0.5 e 5
0 r e — O O
1998 2002 2006 2010 2014

Year

International Technology Roadmap for Semiconductors 1999 update sponsored by the Semiconductor
Industry Association in cooperation with European Electronic Component Association (EECA) ,
Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA),
and Taiwan Semiconductor Industry Association (TSIA)
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Ultra Low-Voltage Operation

(Stanford Univ.)

LFA G

140mV

= -inverter -

i
maa e .E
. l (T=77K)
inverter ko K

=300K)
004 'ﬂ.:]i- ﬂ'..ﬂl- 5:1

W, ¥ Vin, V

Vvin (V)

J.Burr&J.Shott," A 200mV Self-Testing Encoder/Decoder using Stanford
Ultra-Low-Power CMOS",ISSCC94, pp.84-85.
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Power & Delay Dependence on Vg & V-

i ke k.C_.V
POWGF . P:pt-fCLK-CL-VDZD + IO.]_O S 'VDD Delay = Q — L DDa
| (Vpp - Vin)

(0=1.3)

T.Sakurai



Controlling Vp, and V-, for low power

Low power - Low Vpy —» Low speed - Low
V.4 - High leakage - V-V control

Active Stand-by
Multiple V14 Dual-V1y4 MTCMOS
Variable V4 Viy hopping VTCMOS
Multiple Vpp Dual-Vpp Boosted gate MOS
Variable Vpp Vpp hopping \
Software-hardware cooperation \

Technology-circuit cooperation

*) MTCMOS: Multi-Threshold CMOS

*) VTCMOS: Variable Threshold CMOS
e Multiple : spatial assignment

* Variable : temporal assignment

T.Sakurai



Controlling V, and V-, for low power

Active Stand-by
Multiple V14 Dual-Vy MTCMOS
Variable V4 Vy hopping VTCMOS
Multiple Vpp Dual-Vpp Boosted gate MOS
Variable Vpp Vpp hopping

e MTCMOS: Multi-Threshold CMOS

T.Sakurai




Multi-Threshold CMOS Circuit

MTCMOS logic MTCMOQOS latch
1) Q Q
_ 4 )
CMOS logic Low-Vq,
P DTIP %D@ Q
oWV N )[233 |
St'by 4L ; 1 I St'by I'J L Hi-V
AV T 1 Hi-Vy, ™

@ In active mode, low-V, (~0.2V) achieve high speed.

@ In standby mode when St'by signal is high, high-V,,
(~0.6V) MOSFET in series to normal logic circuits cut off
leakage current.

® Doesn’t work under 0.8V.

T.Sakurai



Controlling V, and V-, for low power

Active Stand-by
Multiple V14 Dual-Vy MTCMOS
Variable V4 V4 hopping VTCMOS
Multiple Vpp Dual-Vpp Boosted gate MOS
Variable Vpp Vpp hopping

T.Sakurai




Subthreshold current

-2
10 NMOS L =0.3um
W = 10um
4
.<_‘:.10 V=0V Vig = V4o~ y\/ZQDF ~Vas
o =Vio~ViVes (11 =015~0.2)
S 6 | -1
310 | Viy D Jo
3 -3V _T
Dl()-8 0.4 Ves VrH G le OB
10 / (s ~ 0.1V / decade) --VG_S VBST
10 0

1
Gate Source Voltage Vg [V]

2
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Standby Power Reduction (SPR) Circuit

are added to ensure reIiabiIity |

ISSCC'95 pp.318-31

M3, 1

IJ- < \/NBB (4V)

i

% E% = VNWELL (2 or 4V)
T < \/DD (2V)

e In standb mode and in IDDQ test,
substrate bias is applied to increase
VTH, which reduces leakage.

» In active mode, substrate bias is not

applied to lower VTH, which ensures
high speed

< \/ss (0V)
Ei T > VVPWELL (0 or -2V)

LeveI Shlfter\/oltage SW|tch

< \/PBB (-2V)

T.Sakurai



Previous circult schemes

VDD ——= —t—== Vpp
qr Low Vth VDD {1
I (~0.2V) Low Vth (Active)
| 4q[ i (~0.2V)
S s _ AL High Vth(Stand-by)
High Vin GND ¢ (~0.6V)
GND (~O.6V) Vnn
MTCMOS (1l VTCMOS 12
 Tunneling leakage e Junction leakage
cannot be cut-off. Increases due to
« Area penalty increases band-to-band tunneling.
when VDD < 1V.  Tunneling leakage is

not suppressed.

[1] S.Mutoh et al. IEEE, JSSC, 1995. [2] T.Kuroda et al. IEEE, JSSC, 1996.
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10 0.4
10 -________.—>l~
10‘12 V’[h 0.4V

10

13

Transistors go leaky

E

Subthreshold
Leakag 0.2V

N
/////// Juncﬂoj
0.3V Leaka
(Vhs=-1V]]
M/‘ ~Gate Tunneling :

Leakage

\
/ Requirement
| (Stand by Power = 1m\§/)

:

1999
(180nm)

2002 2005 2008

(130nm) (100nm) (70nm)
Y ear (technology Node)

2011
(50nm)
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Controlling V, and V-, for low power

Active Stand-by
Multiple V14 Dual-Vy MTCMOS
Variable Vy4 VTCMOS VTCMOS
Multiple Vpp Dual-Vpp Boosted gate MOS
Variable Vpp Vpp hopping

T.Sakurai




Boosted-Gate MOS (BGMOS)

Device / circuit collaborative approach

Vo _O| ______ _O| ___________________ ‘.
| = o
i CMQOS circults
i — - low V4,
i 1L - ultra thin Ty
Virtual Vg Sy S JF “““ "
0_| Leak cut-off Switch (LS)
4 - high V-,
<Standby> <Act|ve> - thick Tox
BOOST
__________ Vpp
N~ " oV

T.Inukai, M.Takamiya, K.Nose, H.Kawaguchi, T.Hiramoto and T. Sakurai, "Boosted Gate MOS
(BGMOS): Device/Circuit Cooperation Scheme to Achieve Leakage-Free Giga-Scale Integration,”
CICC'00, p.409, May 2000.

T.Sakurai



Drain Conductance (mS/um)
o N

Leak switch optimization

w

—

i Tech. Node: 50nrﬁ1 50
: Vi, = 0.5V (const.).

1 2 3 4 5 6 7 8
Toy (NM)
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GSl's In deep-submicron era

( )

SRAM (leak cut-off by high V4{)

Logic Circuits |
7
L4 4 F/F |Analog
1 j 1 (low Vg
Reduces
CStandby> <Active> ] | L' S/N ratig)
VBOOST\N Leak qutroff
Voo Power| Syitch
Vss y

| /O (for compatibility)

Low voltage High voltage
Low Vi High V;4
Thin Tgx Thick Ty

T.Sakurai



Power switch gate width in BGMOS

Vbp Vbp

Logic VDD‘DE _f_‘|j[
low-V1y E — [ =

Virtual ground ‘

Stby—l I: Power switch R % — Cx
high-VTH —

Kao, DAC'97, pp.409-414.

Degrade circuit speed unpredictably

T.Sakurai



Controlling V, and V-, for low power

Active Stand-by
Multiple V14 Dual-Vy4 MTCMOS
Variable V4 V4 hopping VTCMOS
Multiple Vpp Dual-Vpp Boosted gate MOS
Variable Vpp Vpp hopping

T.Sakurai




Dual-V.,, concept

Low-V; circuit
(High leakage)

High-V;, circuit
(Low leakage)

- Critical paths

Non-critical paths

T.Sakurai



Calculated. result of power reduction
(Theoretical, Vy5=0.5V)

P(tq)

o

2

o

o

©

(¢D)

N

=

S

o

Z V,,=0.5V _
; _ AV.,=+0.04V |

0 0.1 0.2 0.3 0.4

Vry(high)-Vo,(low)
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Synopsis simulation result
Simple processor example

Viy(low)=0.1V

0.5} , )
Viy(low)=0V

Normalized power

Viy(low)=-0.1V

Vpp=0.5V

0 0.1 0.2 0.3 0.4
Vry(high)-Vo,(low)

T.Sakurai



Controlling V, and V-, for low power

Active Stand-by
Multiple V14 Dual-Vy MTCMOS
Variable V4 V4 hopping VTCMOS
Multiple Vpp Dual-Vpp Boosted gate MOS
Variable Vpp Vpp hopping

T.Sakurai




Clustered Voltage Scaling for Multiple Vpp's

Conventional Design CVS Structure
FF [ Level-Shifting F/F

1FF FFI 1FF —Do—-j FF -
{FF H>o—2 Do——1 X{FF | H{FF o Do— FF [
{FF e ‘ —J o FF | FF | 3T Dol FF
{FF i 1FF -
—L > FF —PFE
1{FF WD=D—FFF 1{FF [D>—D—1FF |
Critical Path Critical Path

Lower Vpp portion is shown as shaded

Once V, _ is applied to a logic gate, V, is applied to subsequent logic gates
until F/F’s to eliminate DC current paths. F/F’s restore V,,.

M.Takahashi et al., “A 60mW MPEG4 Video Codec Using Clustered Voltage Scaling with Variable
Supply-Voltage Scheme,” ISSCC, pp.36-37, Feb.1998.
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Path-delay Distribution in Dual-VS

4 risc pct 4 IDCT
45 cells) (5466 cells) (6227 cells)
4 DMA 4 vip | VLC
1493 cells) (3812 cells) (3462 cells)
p(t) A before MEC p MEF } MCB
(2912 cells) (1527 cells) (1366 cells)

p- | >

T.Sakurai



Clustered Voltage Scaling Technique

Power dissipation (mW)

100

90 I Y

80 |

70 =

60 -

50 ©Vessurec

easur

40 \ Logic
0 : FIF

20 . -51% I Clock
10 Memory
0 3.3V 2.5V 25V & 1.75V

Conventional VS & Dua-VS &
VTCMOS VTCMOS

M.Takahashi et al., “A 60mW MPEG4 Video Codec Using Clustered Voltage Scaling with Variable
Supply-Voltage Scheme,” ISSCC, pp.36-37, Feb.1998.
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Controlling Vp, and V-, for low power

Active Stand-by
Multiple V14 Dual-Vy MTCMOS
Variable V4 Vg hopping VTCMOS
Multiple Vpp Dual-Vpp Boosted gate MOS
Variable Vpp Vpp hopping

T.Sakurai




If you don’t need to hussle,
Vp should be as low as possible

0.6

: 1

Vpp Should be lowered
to the minimum level

which ensures 0.2
the real-time operation.

0.47

Normalized power

. 1.0
Energy consumptionis | (/]
proportional to -/
the square of V. 0gl —— }:/&ré%b\l/%gdd

fffffffffffffffffffffffffffffffffffffffff

0.0
0

.0 0.2 0.4 0.6 0.8 1.0
Normalized workload
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Application slicing and software feedback
loop In Voltage Hopping

- Tse = Time constraint of sync frame
Voltage i » - ‘
frequency | i - | T T ;
controller i i | < | o
: i i i n >
Clock & VDD T I I SO
oc o et |
Contr & VDD Tes [l T1ars ]TB,

Tizpn =T+ Tws

—f l — Twpe=Tm+TwsXx2
fVAR - fl - fCLK TTD —————————————————
'ﬂ—g /—' _L.s,fs___-[ws_z( 3_,""'

fuar = f2 = fork/2 [Tepl
| < g / TL3f4—TTD+TW3X4
fuar = fa = foLk/3 ;
Processor core VAR T TS » | Clock frequency [ !
fuar = f4 = fok/4 [Tl | |for the previous |’
! timeslot was f...

S.Lee and T.Sakurai, “Run-time Power Control Scheme Using Software Feedback Loop for
Low-Power Real-time Applications,” ASPDAC'00, A5.2, pp.381~pp.386, Jan. 2000.

S.Lee and T.Sakurai, “Run-time Voltage Hopping for Low-power Real-time Systems,” DAC'00,
June 2000.
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Run-time Voltage Hopping
reduces power to less than 1/10

MPEG-4 video encoding

0.16

x0.141 —8— RVH: 2 levels (f,f/2)
2} |~ RVH : 3levels (f,f/2,/3)
o 0-12] —»— RVH : 4 levels (F,/2./3.f/4)
S 010 RVH : infinite levels
= ~'~°| ~® post-simulation analysis

5 0.08

©
G peeeeas St

T A A
EO'O4T0+00000000
2

S0.0
zZ

0.00I I I ! !
00 02 04 06 08 10

Transition Delay T (ms)
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Measured power characteristics

‘ Total power =0.8 x 0.08 + 0.16 x 0.86 + 0.07 x 0.06 = 0.2W I

1

o ©
S 0o

o
=

Power: P [W]

—
N

Time for sleep: 698 0.07W

0 1 2
Supply voltage: Vp [V]

‘ VDD hopping can cut down power consumption to 1/4 I

T.Sakurai
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Power Conscious OS & AEEIication Slicing

0 10 20 30 40 50 >60

Conventional rate-monotonic scheduling (power consumption=1)

>
0 10 20 30 40 50 60
Speed control with power-conscious OS (power consumption=0.85)

TITIIIIW_WJIIIITII >

0 10 20 40 50 60
Speed control within application slices (power consumption=0.47)

WIIIIIIIIIIIIIW_I_I_IT|||| >

0 10 20 30 40 50 60
Proposed scheduling: cooperation of OS and applications (power consumption=0.24)

Y.S.Shin, H.Kawaguchi, T.Sakurai, "Cooperative Voltage Scaling (CVS) between OS and
Applications for Low-Power Real-Time Systems," CICC'01, pp.553-556, May 2001.

T.Sakurai
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Controlling Vp, and V-, for low power

Active Stand-by
Multiple V14 Dual-Vy MTCMOS
Variable Vqy Vy hopping VTCMOS
Multiple Vpp Dual-Vpp Boosted gate MOS
Variable Vpp Vpp hopping

K. Nose, M.Hirabayashi, H.Kawaguchi, S.Lee and T.Sakurai, “VTH-hopping
Scheme for 82% Power Saving in Low-voltage Processors,” to be

published, CICC 2001.

T.Sakurai




:O):l)

P (P(Viy

Normalized power :

Vazhopping

V. =0.5v >
0.35um process N
)
6 g
Delay >
—
4 11 <
©
Leakage power S
©
2 g
Dynamic power e
1 s
02

0.0.1 0 0.1 0.2

Threshold voltage : Vi, [V]

Normalized Power

0.5

VTHI0W=OV
Vp=0.5V
0.35um process
— = Fixed Vq,
Dynamic
— Vqycontrol

0 0.5
Normalized workload
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Schematic of V. ,-hopping

VTHIow_Enable

VTHhigh_Enable
Voy-hopping
CONT Vv (VTHIOW&VTHhigh)
o '
controller V
Vgspz » ? BSP
V &
BSP1 V
DD
xBSNZ A 1y 1 GND
o> BSNI .
Freq. VBSN
trol| |
contro
fCLr or fo /2
4

Power control block

Target processor

T.Sakurai



Microphotoqgraph of RISC processor

0.6um process

Overhead of V;,-hopping
= 14%

VBS "

selector RISC core
S LARE =2.1mm x 2.0mm
. Vs Selector

=0.2mm x 0.6mm

T.Sakurai



Power comparison

1

Leakage power
g Dynamic power
S Vpp=0.5V
ko Vihion=0V '
N 94% f/2 operation
‘© 0.5} .
=
@)
Z

‘e
e
.
0
.
‘e
.
.
‘e
.

Fixed Vi, Dual V;, Vq,-hopping Vq,-hopping
Fixed freq. + Dual V,
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Principle for Power Reduction

P=aesC, Ve Vg fox +1p*107V™'® +gate leak + junc. leak

e Lowering switching probability (a)

e Low transition coding
o Gated clock , Conditional F/F
o« Power estimation / optimization CAD

e Lowering load capacitance (C))

e Embedded memory
e Low capacitance circuit
e Low-power cell library (gate sizing)

e Lowering supply voltage (Vs* Vp=Vpp?)
o Variable-Vp, Variable-V;,, Multi-V,,, Multi-V,, , DC/DC
e Low voltage memory
e Low swing clock / bus

e Lowering operating frequency
o Better algorithm

T.Sakurai



Bus Shuffling

e Bus shuffling
e Virtually no overhead

o Pattern information is necessary: applicable to special-
purpose systems

o Layout modification or compiler backend support
e Problem definition
o Given a set of patterns or statistics of patterns

e Find order of bus lines so that power consumption due
to area and coupling capacitances is minimized

Y. Shin and T. Sakurai, “Coupling-driven bus design for low-power application-specific systems,”
Proc. Design Automation Conf. (DAC), pp.750-753, June 2001.

T.Sakurai



e DU S SOUTING

time

o Example
b, e, b,
00011110 00011110
01110001 01110001
00110000 00110000
01001111 01001111
v 10000111 10000111
W
shielding lines
00011110 00001111
01110001 11100001
00110000 00100001
01001111 11001110
10000111 10011010

00011110
01110001
» 00110000
01001111
10000111

|

line with
highest
transition prob.

»

00011110 00011110
01110001 01110001
00110000 00110000
01001111 01001111
10000111 10000111
} !

line with line with
highest positive highest positive
switching switching
correlation with correlation with
be beff bo

partial order of

this cluster:

bobgbs

T.Sakurai



Experiments

e Result of heuristic
e 7/ data address sets
e % power saving compared to un-shuffled

buses
100
meta=1
90 W eta=2
80 O eta=3
Eg:g;g _ coupling cap.
0 r @ eta=infinity area cap.
o 60 []
=
& 50 ] m
X 40 | [
30 ] — 1 — B
20 — — — — B
10 — — — — B
0 ||
wavelet linear laplace  compress lowpass fft ac3

T.Sakurai



Software Level Low-Power Work

Low-power SW

/\

Applications Operating system (OS)
Source-level design Compilation Shutdown Slowdown
e ~ — N
-LP appl design -Instruction scheduling -Time-out -Reactl_ve system
-Power-aware appl -Register allocation -Predictive -Real-time system
-Memory mapping -Policy opt

Techniques with architectural changes
I

-Cache design

-Memory hierarchy design

-Code compression
-Application-specific processor design
-Encoding

T.Sakurai



Less wasteful design wins low-power race

Example of MPEG2 decoding

® Processor (software)

>

N . 0 25W
= QO

S| 2

3| = ® DSP

=| 2 AW
5| 3 -

I

v ® Dedicated sytem LSI (SW/HW)
0 0.7W
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Summary — low-power

® For reducing standby power, insert a power
switch in series to logic circuit (BGMQOS).
— Choice of power switch gate width

® For reducing active power, dual-VTH
scheme and software control of VDD and
VTH are promising.
— Tools to support system-level low-power
design with S/H co-design capability

@® Future giga-scale integration will use
multiple VDD, VTH and Tox.
— Tools to support new tech.

T.Sakurai



Drain induced barrier lowering (DIBL)

Source 7 Drain
quDD

High Vg Low Vpp

o Drain-SourcefBIEBEMNTABDE/NVRT Py THEEML,
J—OBRMNBILT S

T.Sakurai



Stack effect

- M—*

/f.'rfm'.ﬂ; -1
W

1 i

=)
=)
@
Fo}
Normalized current
o L -
() o0

04
W, [ .
_| <-\/lNT O !
W, /57 of 05 1 15
¥ Vs (V)

o Stack effect DERRDFIR =V, ; <<V, & W A B [Zbias
o W, ... DIBLIZIEREIZLLENK (Vps B Vpp— V(1 I1SH5 5 1=8)
o W, ... V;=0.1VTHI ca [FIHTE D (Voe=-0.1VIZZLLY)
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Scaling of DIBL factor

generation [um] 0.18 0.13 0.09 0.06

Voo 1.8 1.5 1.2 0.9

stack effect

8 9.5 10.5 11.5
factor

DIBL factor : A 0.042 0.057 0.076 0.103

S=80mV/decade

T.Sakurai




Analysis of DIBL effect

2
Voo < VppL _ : -
= | .
O
o 14 o 11
¥aY [ =
LE - ' VobL %))
O D o
> e '
Pratio —»p 0.4
0 . . 0
0.06 0.09 0.13 0.18

Design rule [pum]

Pratio = P(V5 )/P(Vpph)

DIBLIZEHEZZEZS5T-1TERTET S (ONFHDIBLZ R (T5)
V14=0.15Vpy, TDHDINFGA—ZRIERTIDRASA R ERIL

MENHRICIFEAE LIST HLI2%IZFH D
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Three crises in VLSI designs

® Power crisis
® Interconnection crisis

o Complexity crisis

T.Sakurai



Number of interconnect layers

Interconnect determines cost & perf.

[
[

[H
o
|

[09)
|

~
I

(ITRS'99)

6
2000 ‘05

‘10 ‘15

Year

100 = I I
80  MOSFET T
§ 60 |- /_
o
3
g 40 <
Interconnect
20 |- -
0 | | |
2000 ‘05 ‘10 ‘15
Year

100 = I I
80 |- I
—60 |- .
S,
>
©
T 40 [ &
&)
20 |- .
RC delay
w/o buffers
0 | | | |
2000 ‘05 ‘10 ‘15
Year

100 1 I I I
MOSFET
80 -
=,
S 60 F -
9
)
()]
D a0 -
(@)
o Interconnect
a
20 A
0 | | | |
2000 ‘05 ‘10 ‘15
Year
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DSM interconnect design issues
become major design closure obstacles

Larger current
IR drop (static and dynamic)
Reliability (electro-migration)

Smaller geometry / Denser pattern
RC delay
Crosstalk noise
Delay fluctuation
Signal Integrity

Higher speed
Inductance
EMI

T.Sakurai



Interconnect parameters trend
4

Al | Cu

01996 2000 2004 2008 2012
Year

Semiconductor Industry Association roadmap
http://notes.sematech.org/1997pub.htm
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Delay (sec)

RC delay and gate delay

-10

10 |

-11

10 |

-12

10 —_—
1996 2000 2004 2008 2012

100

S0um

Clock period

Gate delay

Year

T.Sakurai



Buffer insertion

CTW e Doraors-[Yoaaom

a) Without buffers b) With buffers
tos = 0.377RN7Cint +0.693(RrCr + R Ciny + Ryt Cr)

C, :Gatecapacitanceof minimum MOSFET
R, :Gate effectiveresistance of minimum MOSFET

[]
Delay =k p, Rivt St pZER—OhC0 +Ro Oty Rinr hC, % Buffered
S Tk 7h h kK 53

dbelay _, hopr = CintRo :Optimized size of buffer inverter
oh RintCo

oDelay =0 - Kgpy = P1 |RintCint :Optimized number of stages
ok P2 RoCo

Delay qpt = 2(\/p1p2 + pz)\/RINTCINT RoCo = 2-4\/T|NTTMOS

Cap. of gates =KoprhoprCp = 4/P1/P2Cyy =0.73Cyr
T.Sakurai



o) oA VAVAVAYAYAYA

Power and delay optimization

RINT

a) Without repeaters b) With repeaters

1.8

1.6

14 h: size of repeater
1.2 K: # of stages

1 D: total delay
0.8 .

Cn7- INnterconnect

0.6
0.4 capacitance
0.2

1 121416 18 2 222426 28 3
Capacitance increase / Ct
T.Sakurai



Buffer insertion with junction cap.

C, . .
L:length Size: h k stages
C DO—’\/\/\/\/\/\/‘ |DOA~1DOAN ........... |DO"V*1>O"""
' RinT & &
Ry CINT/J] Lenath: |
a) Without buffers b) With buffers ~ —€Ngth.
C
Delay opr = ZLHH\/plpz +p2\/C +OC E\/RINTOCINTORO(CO +Cyo)
0 JO
= 2L(\/plp2 "'pz\/l/rh )\/TINTOTMOSO \/nJ , Tmoso = RoCo
= 2.4L\TjyroTwoso (When Cyp =0) . C 0
=1+230
= 2.8L\/T|NTOTMOSO (when C,, =C,) - Co

@ Delay is 15% smaller when C, is negligible.

@ Delay is a geometric mean of interconnect delay and gate delay

and decreases when gate |s faster, [p C, +C,p B
Ap (power increase) =K gprhopt (Co +CJO)=\/ 1\/ Cnr = —1\/na Cinr
I:)2 C0 I:)2
=0.73Cr (when C,, =0)

=1.04C,; (when C,;, =C,)

@ Total poweris 15% smaller when C; is negligible.
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Buffered interconnect delay

10°  In Emotion Engine
design for PS2,
1um x 1um abo_ut 10k buffers
chip long are inserted,
which is
. 10° ‘ Increasing.
O \ock period
2 kglobal)
> 1%@9\\
K chip long
0O 1010 buffered *
Clock period
(local)
Gate de
10t — —
1998 2002 2006 2010 2014

Year

T.Sakurai



RC delay of global interconnections

-6
100 ——————————————
Minimum cross-section interconnect
-7
10
—
O
Chip g 30mm x 30mnj
~— -8] 18mm x 18mm
<. 10
©
(b}
a -9
10 | — Clock period
\
Global interconnect —

1010 6Um X 2um cross-section interconnect
1998 2002 2006 2010 2014

Year

T.Sakurai



DSM interconnect design Issues

Larger current
IR drop (static and dynamic)
Reliability (electro-migration)

Smaller geometry / Denser pattern
RC delay
Crosstalk noise
Delay fluctuation
Signal Integrity

Higher speed
Inductance
EMI

T.Sakurai



Capacitive Coupling Noise

4
3 s
9 .
Z o C12/C2p
1| peak couple n0|se/3|qnal voltage
O 1 1 1 1 1 1 1
1996 2000 2004 2008 2012

Year
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Coupling noise in RC bus

_ 1 1
E c/C =1 E CclC =11
/"’
v = " V1
(@) Vet )
S e IS
/, ‘-\N > /’ \-Q-ﬁ"-“_.h
V2 / V2
0lL
0 1 2 OO 1 >
., Time :t/RC :
_I_ W Time :t/RC
t=0 C?!\"L —l_ M—QV:L
FMW t=0 e
s ;CL
I EZP—M_.V]' C
0 t=0 C?!"L Ce 5 %Vl
—— 0 t=0 C
(Cc/lC<2 CT7 e V,_._,::S,M B
Vp= _CC/C o e 7h
T+occic  (Bus) vp= VIF4CerC-1
2Cc/C : -
= Three lines
Vp= — == ( ) v 1+4Cc/C+1

H.Kawaguchi and T.Sakurai, "Delay and Noise Formulas for Capacitively Coupled Distributed RC Lines," ASPDAC,
Digest of Tech. Papers, pp.35-43, Feb. 1998.
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Coupling among Interconnections
0.2 02u

B B s

Jo.5u
p— — — T
.' , e 111
: y +1t 4

w/o buffers

| W -
DA o
{>J—¢&—&v~ o

-

Normalized voltage
o
o1

C% 7 cgc=3.1

t
@ E+2’7 \Flog \/1"'8'7"‘6'7

=1.63n+0.371(n<2)(n=C./C)

H.Kawaguchi and T.Sakurai, "Delay and Noise Formulas for Capacitively Coupled Distributed RC Lines,"
1998 ASPDAC, Digest of Tech. Papers, pp.35-43, Feb. 1998.
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Coupling among Interconnections

% 1 b —— Normal buffer insertion
= ! In1 oW oW >0 L>o-
5 -28% [+32% In2 P50 W >o-W oW o-
CINJ 0.5 pf-e 14._" ............................................................................ 4
= [ 0.13mm process|in3 oW oMo Lo
£ I Linr=3mm W, /W,=251/38
o v ! K=8 (# of buf.)
Z of—11- - - N1 In2 In3
_ time — _}T -
% 1 [ e+ 1
= [ + T 3
>
2 o5 E9% Zigzag buffer insertion
Q0.5 b S
£ 4% i1 Po—Wo-wW >0 >0
% f' |n2-Do—\N‘-Do—‘N\—Do-\N- ..... _Do_
l.
< Ov L : I3 T o—W oW >0 >o-

T.Sakurai



DSM interconnect design Issues

Larger current
IR drop (static and dynamic)
Reliability (electro-migration)

Smaller geometry / Denser pattern
RC delay
Crosstalk noise
Delay fluctuation
Signal Integrity

Higher speed
Inductance
EMI

T.Sakurai



Interconnect Cross-Section and Noise

Unscaled / anti-scaled
* Clock
 Long bus
e Power supply

Scaled interconnect OO0o000000O0O00O0O0OO0O0OoOOoo0O0OoOOooOoooaon
. Ooooo0o0o0o0o0OoO0o00o00o0Ooooooooooooan
e Signal _

1V 20W - 20A current
5% noise - 0.05V noise -~0.02V / 20A - ~10um thick Cu
Thick layer interconnect, area pad, package are co-designed.

T.Sakurai



DSM interconnect design Issues

Larger current
IR drop (static and dynamic)
Reliability (electro-migration)

Smaller geometry / Denser pattern
RC delay
Crosstalk noise
Delay fluctuation
Signal Integrity

Higher speed
Inductance
EMI

T.Sakurai



L : Self-inductance (nH/cm)

Inductance

=
o
o

=
o

i

0.1

0.5

[1]

Now RC effects surmounts LC
effects because R > |jwL|.

In the future, both of R and wL
increase (but for signal lines R >
jwL]).

Exception in low-R lines

Inductive effects should be
considered in wide clock lines in
a fast processor, power supply
lines and wide-bit bus lines
changed at the same time.

Clock lines are placed on power
plane to reduce inductive effects.

D.A.Priore, "Inductance on Silicon
for Sub-micron CMOS VLSI,"
Symp. on VLSI Circuits, 1993.
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wL /R

2

10

11}

10

0 L

10

11

10

10°

1996 2000 2004 2008 2012

Inductive Effects

W=100gm o
---- W=10pm_--"
’/
/_—_—
~ —
” —-’
-
W=lgm _ -~
....
PR
,‘
L —
_—

Min. width (scaled)

Year
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Inductive Effects in Clock Lines

H B ]
H B HEHBNE
H BN H EHBR
EEEENE EEEEN
EEEENE EEEEN
EEEENE EEEEN
2.0 Al Grid Without Reference Planes 2:0F M rid With Reforence Planes
1.5F 1.5F
v 1.0} v 1.0
i [ /' P.J.Restle & A Deutsch,
g 0 5“_ ¥ “Designing the Best Clock
0.5¢ 1 Distribution Network,” VLSI
i 1 circuits symp., pp.2-3, May 1998.
S0 00 RIT9 200ME CB00 Ml 1400 40 100 200 300 400

Time (ps) Time (ps)

Board design practice is imported in LSI.
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Three crises in VLSI designs

® Power crisis
® Interconnection crisis

o Complexity crisis

T.Sakurai



VLSI Design in 2010

Designing a map of 10m wide roads

for a world atlas /7
N

T.Sakurai



Overcome complexity crisis

 Re-use and sharing of design
e Design in higher abstraction

guv (A inc.)
IP (B univ.)

<P (C inst.)

<P (D semi.)

IP ; CPU, DSP, memories, analog, I/O, logic..
HW/FW/SW

T.Sakurai



System LSI for Games

=]
—

Clock freq. 300MHz

10M transistors

Graphics synthesizer integrate
40M tr. With embedded DRAM
Memory bandwidth 3.2GB/s =
Floating operation 6.2GFLOPS/sec
3D CG 6.6M polygon/sec

MPEG2 decode

T.Sakurai



Issues In System-on-Chip

Un-distributed IP’s (i.e. CPU, DSP of a certain company)
Low yield due to larger die size

Huge initial investment for masks & development

IP testability, upfront IP test cost

Process-dependent memory IP’s

Difficulty in high precision analog IP’s due to noise
Process incompatibility with non-Si materials and/or

MEMS

T.Sakurai



Technologies integrated on a chip

Logic +0
SRAM +1~2
Flash memory +4
Embedded DRAM +4~5
CMOS RF +3~5
FPGA +2
MEMS +2~10
FERAM +4~5
Chemical sensors +2~6
Electro-optical +5~8
Electro-biological | | | | |+’? |
RE : Radio Frequency ‘98 ‘00 ‘02 ‘04 ‘06 ‘08 ‘10 ‘12
FPGA : Field Programmable Gate Array Year ITRS'99

MEMS : Micro Electro Mechanical Systems
FeRAM : Ferroelectric RAM

T.Sakurai



DRAM embeddlng

o
1 ;

LMh:t DRAM . Aifdoksfree: Giate WAty bi o | Tiracksfree Gate Artdy;
]12% words |8 L remu 28K words WY | 72K Raw gates

% 8hit

DRAM Processor o Systé?m Lsi

K.Sawada, T.Sakurai, et al, "A 72K CMOS Channelless Gate Array with Embedded 1Mbit Dynamic
RAM," in Proc. CICC'88, pp.20.3.1-20.3.4, May 1988.

D Two orders of magnitude improvement in bandwidth
and power

BUT EXPENSIVE!

T.Sakurai



Micro-machined mechanical switch

G.Weinberger, “The New Millennium: Wireless Technologies for a Truly Mobile Society,” ISSCC,
pp.20-24, Feb. 2000.
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Silicon MEMS
Microphone

Will soon exceed the performance of the best commercial microphones, yet
be inexpensive and potentially integrated with on-chip electronics.

M.Pinto, “Atoms to Applets: Building Systems ICs in the 21st Century,” ISSCC, pp.26-30, Feb. 2000.
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ELEGTRONIC ENGINEERING

System-in-Package

In some apps, multichip modules do the job more cheaply, conference told

Expanding role of pickaging seen relegating SoC to miche status

By Robert Ristelhueber
INDIAN WELLS, CALIF. ~ The wheels.
tbe coming offthe system-
on-chip {SoC) bandwagon, ifthe
chatter at last week’s Dataquest
§gm1conductot__conferencg_15
anybarometer ofindustry senti-
ment. Heavyweights including
IBM and Lucent Technologies
indicated that costs mayrelegate
SoC to niche status, with new
packaging techniques stepping
into the breach.

“A couple of years ago we re-
ally thought that the embedded
DRAM model would be the pan-
acea for many applications,”
said John Kelly, general manag-
er of IBM Microelectronics.
“It’s not always the right thing.
In many applications it still re-
mains much cheaper to do it
with multichip modules. It gives
| you satisfactory performance
| and often for lower cost.”

! “We have systems-on-chip
' now that are really ‘system on
chips,” " said John Dickson,
president of Lucent Technolo-
gies” Microelectronics Group.
“We do it that way because it’s

System-chip may topple

most cost-effective, and the cus-
tomerwill prefer it that way be-
cause it offers more flexibility.”

The subject was broached

_at the conference here by a

Dataquest analyst who claimed
that SoC designs will increas-
ingly be supplanted in coming
years by multichip packaging
as higher mask costs squeeze

SoC profitability. -
Chip designers have often
been willing to add mask steps
> CONTINUED ON PAGE 6

1BM’s Kelly ‘In many apps, cheaw ions blocks in the chip, Fubs - it’sreal”

to do it with muitichip modules.’

»CONTINUED FROM PAGE X
and complexity to theirlogic de-
vices in order to place analog
and memory functions onto
chips. “But when we get below
0.2 micron we get a cost shock,

and the [return on investment)/

will be diminished or even elim-
. inatedin many cases,

0.35 or even 0.5 micron, aud for
the memoryyou can buy a wafer
from somebody and break it up.
The packageis more expensive,
butthe overall system costis go-

-ing to be substantiallyless.

“The concept hereis to take
some level of interconnect. .

"saidClark _and simply move {it] from thc

 Fuhs, vice president anddirec-  chip into the package.”

" tor of Dataquest’s Semicondue-
tor Manufactnring Programs.

S~

fig at deep submicion because
of the use of phase-shift and op-
tical proximity correction tech-
‘ niques as well as more expen-
sive, 193-nm lithography equip- -
ment, putting low-volame SoC
atacostdisadvantage, Fuhs said.

Militating against SoC de-
signs for many applications is
the wide disparity in revenue

per square inch among the var-

said. “The DSP ormitcroproces-
sorblock can be getting $150 or

$200 per sqrare inch, the FPGA

- .. as industry grapplecigii:

about $50to $60 ... You're ba-.

with impact of cores mode s ssherae:

By Peter Clarke

and Brian Fuller

EDINBURGH, SCOTLAND — Intellec-
tual property cores were a hot
topic last week, both here at the
1P99 Europe conference and at
Dataquest Inc.’s annual semi-
conductor conference in Indian
Wells, Calif. Buc as the industry
struggles with new business

lationships

low-value pieces, yet you Té

ant ' An alternative is to fabricate

fast-moving tech the different blocks as discrete
nology, there was scant agree chips, placed close together us-  within five years, multichip:-
ment on either side of the At ng chip-scale packaging, Fuhs  packaging will be growmg
lantic on how the cores marke ~'
will unfold.

On one thing there was agree
ment: IP cores a.nd deﬂgn TeUS! standard logic can be done in  lars, whether you do small

said. “This enables you to build
the pieces in fabs that are opti-

build aalogina0.7-micron fab,

mized for those pieces. You can *

Fuhs noted that Intel’s Pen-

tium HIis actuallyan 11-level- -

“levels of aluminum
" inside the chip and
five levels of cop-
per outside. And
he showed a photo- -
graph of a Sony
digital Handycam,
which he said con-
1ains 20 chip-scnle
devices, “so this
technologyls here,

National’s Halla touts 'in-
tegrated disintegration.’

"System-in-package’ could make SoC aniche

chips or large chips,” said Na-
tional_Semiconductor Corp~
chief executive officer Brian -
Halla, who has championed
the notion of an information
appliance-on-a-chip. “Ican get
tremendously more perfor-
mance ont of the same square
inches of silicon by having itall
together instead of having it
two inches aparton aboard.
“SoC isn’t a marketing cru-
sade anymore; it’s
something you can
do because the
. techrology allows
it,” Hallaadded. “A
very small die can
containan awful lot
of functionality.”
Halla noted that
Intel used to say
graphics shouldn’t
be combined with
the microproces-
sor, because the

In the not-too-

distant future, he said, wafer

foundries will give customers a
choice of implementing a de-

sign either as a system-on-chip

‘orasseveral discrete devicesus-
ing chip-scale packaging.

"'To survive, the SoC must
evolve 1o fit a more standard-

models, new cus adding cost becanse you're prodnct model} that would al-
tomer-supplier Ie adding mask levels.”

low it to increase volume and
become Thore cost-efficient,
Fuhs said. He predicted that

That view has its detractors.
“Mask sets cost in excess of a
couplc hundred thousand dol-

. pace of innovation differs be-

tween those parts; but Intel’s
upcoming Timna processor, he
said, combinesboth functions.

“Having said all that, there:

‘arecases wherewesgree [about

putting a system on a pack-
agel,” he said. “There is a sub-
strategy of ours called integrat:
ed disintegration, which means..
there are analog functions you
can pull off the chip because
they are such a tiny portion of
the overall chip, and yet they
are the most difficult thing to
port to the next-gemeration
[process] technology.”

IBM’s Kelly said cthat “SoC
integration has to be done se-



SoCvs. SIP

e Smaller area

« Shorter interconnect

 Optimized process for
each die (Analog, DRAM,
MEMS...)

« Good electrical isolation

e Through-chip via

 Heat dissipation is an
Issue

' Heat spreader/

Heat pipe
- I

System in a Package

T.Sakurai



—oUperconnect example based on three-

dimensional assembly

Heat Sink

K.Ohsawa, H.Odaira, M.Ohsawa, S.Hirade, T.lijima, S.G.Pierce, “3-D Assembly
Interposer Technology for Next-Generation Integrated Systems,” ISSCC Digest of
Tech. Papers, pp.272-273, Feb.2001.
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System-in-Package M iR &

Special design tools for placement & route for co-

design of LSI's and assembly

High-density reliable substrate and metallization

technology

low-cost, available known good die

(reworkablility and module testing)

T.Sakurai



Design rule (um)

Super-connect technology

100

Package

| » Package

>
)

———» Package

10 Technol Vv Super-
ecnnoliogy vacuum connect
B /V
1 Interconnect
B ~* Upper layer ———>| Upper layer
Ir.gate \ Lower layer =—> | Middle layer |
. M Tr. gate T~
Lower layer
0.1} — a
E— Tr. gate
M. Kimura "Superconnect - 21st Century LSl Produgtion
and Design Method", Nikkei Microdevices, no.180, pp.p2-79,
0.01 June 2000.
Past Present Future
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Super-connect

@ Off-chip On-chip
[mm] [mMW] [GB/ [mm? [AU] [day]
e sec] /blt] e e 1000 [
100 1000'_| 1000 [ 10° I_|1000 ==
= —
10 T 100 T 100 T 104 T 100 | 1001
Super-connect
1 = 10T 10T 10% [ 10 T
0.1} 1} 1 -=% 102 } 1k 10 -=%
Design rule Power Band Area Cost  Turn-around
@1GB/s width /line time
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0.5V LSITO ¥ m E %

4 | . :

20°C\ ' Measured
- 31\ S
N
s
g 2/%CN\
E
5 1
=

0 : :

0 05 1 15 2

Vpp [V] Photograph of 32bit FA

0.3um CMOS

K.Kanda, K.Nose, H.Kawaguchi, and T.Sakurai,"Design Impact of Positive Temperature
Dependence of Drain Current in Sub 1V CMOS VLSI's",CICC99, pp.563-566, May 1999.
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Assembly & Packaging

“There 1s an increased awareness In the
iIndustry that assembly and packaging is

becoming a differentiator in product
development.”

International Technology Roadmap for
Semiconductors, ITRS'99 p.213
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LSl in 2014

Year Unit 1999 2014 | Factor
Design rule Hm 0.18 0.035 0.2
Tr. Density /cm2 6.2M 390M 30
Chip size mm2 340 900 2.6
Tr. Count per chip (uUP) 21M  3.6G 170
DRAM capacity 1G 1T| 1000
Local clock on a chip Hz 1.2G 177G 14
Global clock on a chip Hz 1.2G 3.7G 3.1
Power W 90 183 2.0
Supply voltage V 1.5 0.37 0.2
Current A 60 494.6 8
Interconnection levels 6 10 1.7
Mask count 22 28 1.3
Cost / tr. (packaged) pcents 1735 22| 0.01
Chip to board clock Hz 500M 1.5G 3.0
# of package pins 810 2700 3.3
Package cost cents/pin 1.61 0.75 0.5

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor
Industry Association in cooperation with European Electronic Component Association (EECA) ,
Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA),
and Taiwan Semiconductor Industry Association (TSIA) , International Technology Roadmap for
Semiconductors: 1999 edition. Austin, TX:International SEMATECH, 1999.
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Prosthesis - Dual Intraocular Units

NC STATE UNIVERSITY

ARTIFICIAL RETINA SYSTEM®

i :_-.'i Briinal implasd
; mnwerts radin
wardes bo data amd

nergy

"EALLE BN JINIeN PROM e aRFEIE ERiapRginy e CiRg

NI PIRLT,

Courtesy: Prof. Wentai Liu (North Carolina Univ.)
http://www.ece.ncsu.edu/erl/faculty/wtl_data/retina.html
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Summary — Interconnect & SIP

® New possibilities with buffered
Interconnects may open up new tools
opportunity.

® Silicon-in-Package needs new tools that
support co-design of VLSI's, package and
assembly.

New design closure issues

T.Sakurai



Super-expoenentially increasing design

[HEN
A

Number of Transistors

1Billion

Y

challenges

Functionality + Testability

Functionality + Testability + Wire delay

Functionality + Testability + Wire delay+ Power management

Functionality + Testability + Wire delay+ Power management
+ Embedded software

Functionality + Testability + Wire delay+ Power management

+ Embedded software + Signal integrity
Functionality + Testability + Wire delay+ Power management + Embedded software + Signal
integrity + RF
Functionality + Testability + Wire delay+ Power management + Embedded software + Signal
integrity + RF +Hybrid chips
Functionality + Testability + Wire delay+ Power management + Embedded software + Signal
integrity + RF +Hybrid chips + Packaging

Functionality + Testability + Wire delay+ Power management + Embedded software + Signal integrity + RF
+Hybrid chips + Packaging + Management of physical limits

ITRS'99
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