実装プロセス工学シンポジウム 「スーパーコネクトに対応した層間接続プロセス」 2001年5月18日

東京大学、国際・産学共同研究センター 生産技術研究所 桜井貴康 E-mail:tsakurai@iis.u-tokyo.ac.jp

Moore's Law

System on a Chip (SoC)

Re-use and sharing of design
Design in higher abstraction

Logic

og

USB Co

✓ IP (A inc.)
✓ IP (B univ.)
✓ IP (C inst.)
✓ IP (D semi.)

IP ; CPU, DSP, memories, analog, I/O, logic.. HW/FW/SW

Issues in System-on-Chip

- Un-distributed IP's (i.e. CPU, DSP of a certain company)
- Low yield due to larger die size
- Huge initial investment for masks & development
- IP testability, upfront IP test cost
- Process-dependent memory IP's
- Difficulty in high precision analog IP's due to noise
- Process incompatibility with non-Si materials and/or MEMS

System in Package

System-in-Packageの課題

- Special design tools for placement & route for codesign of LSI's and assembly
- High-density reliable substrate and metallization technology
- low-cost, available known good die (reworkablility and module testing)

Technologies integrated on a chip Logic +0 SRĂM Flash memory +4 Embedded DRAM +4~5 CMOS RF +3~5 FPGA +2 MEMS +2~10 FeRAM +4~5 **Chemical sensors** +2~6 Electro-optical +5~8 Electro-biological +? **'00**' **'02 '08 '10** '12 **'98 '04 '06** '9 RF : Radio Frequency FPGA : Field Programmable MEMS : Micro Electro Mecha FeRAM : Ferroelectric RAM Year ble Gate ate Array ITRS'99

Nikkei microdevices

Super-connect

Interconnect determines cost & perf.

DSM interconnect design issues

Larger current IR drop (static and dynamic) Reliability (electro-migration)

Delay fluctuation

Smaller geometry / Denser pattern RC delay Signal Integrity Crosstalk noise

Higher speed Inductance EMI

ational Technology Roadmap for security association in cooperation with European Electro onic Industries Association of Japan (EIAJ), Korea St ponsored by the Semiconducto nent Association (EECA), tor Industry Association (KSIA),

1V 20W \rightarrow 20A current 2% noise on VDD & VSS \rightarrow ~0.02V / 20A \rightarrow ~10µm thick Cu Thick layer interconnect, area pad, package are co-designed.

RC delay and gate delay

Repeaters						
a) Without repeaters $t_{05} \approx 0.377 R_{WT} C_{WT} + 0.693 (R_T C_T + R_T C_{WT} + R_{WT} C_T)$						
C ₀ :Gate capacitance of minimum MOSFET						
R ₀ :Gate effective resistance of minimum MOSFET						
$Delay = k \left[p_1 \frac{R_{INT}}{k} \frac{C_{INT}}{k} + p_2 \left(\frac{R_0}{h} hC_0 + \frac{R_0}{h} \frac{C_{INT}}{k} + \frac{R_{INT}}{k} hC_0 \right) \right]: Buffered$						
$\frac{\partial Delay}{\partial h} = 0 \rightarrow h_{OPT} = \sqrt{\frac{C_{INT}R_0}{R_{INT}C_0}}: Optimized size of buffer inverter$						
$\frac{\partial Delay}{\partial k} = 0 \rightarrow k_{OPT} = \sqrt{\frac{p_1}{p_2}} \sqrt{\frac{R_{INT}C_{INT}}{R_0C_0}}$:Optimized number of stages						
$Delay_{OPT} = 2\left(\sqrt{p_1p_2} + p_2\right)\sqrt{R_{INT}C_{INT}R_0C_0} \approx 2.4\sqrt{\tau_{INT}\tau_{MOS}}$						
Cap. of gates = $k_{OPT} h_{OPT} C_0 = \sqrt{p_1 / p_2} C_{INT} = 0.73 C_{INT}$						

RC delay of global interconnections

0.5V LSIでの逆温度特性

0.3μm CMOS

K.Kanda, K.Nose, H.Kawaguchi, and T.Sakurai, "Design Impact of Positive Temperature Dependence of Drain Current in Sub 1V CMOS VLSI's", CICC99, pp.563-566, May 1999.

LSI in 2014

Year	Unit	1999	2014	Factor
Design rule	μm	0.18	0.035	0.2
Tr. Density	/cm2	6.2M	390M	30
Chip size	mm2	340	900	2.6
Tr. Count per chip (µP)		21M	3.6G	170
DRAM capacity		1G	1T	1000
Local clock on a chip	Hz	1.2G	17G	14
Global clock on a chip	Hz	1.2G	3.7G	3.1
Power	w	90	183	2.0
Supply voltage	v	1.5	0.37	0.2
Current	A	60	494.6	8
Interconnection levels		6	10	1.7
Mask count		22	28	1.3
Cost / tr. (packaged)	µcents	1735	22	0.01
Chip to board clock	Hz	500M	1.5G	3.0
# of package pins		810	2700	3.3
Package cost	cents/pin	1.61	0.75	0.5

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIA), Norea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA), International Technology Roadmap for Semiconductors: 1999 edition. Austin, TX:International SEMATECH, 1999.

Possible electronic system in 2014

Sensors/actutors

- 0.035µm 3.6G Si FET's with VTH & VDD control
- Locally synchronous 17GHz clock, globally asynchronous
- Chip / Package / Board system co-design for power lines, clocks, and long wires (superconnect)