実装プロセス工学シンポジウム 「スーパーコネクトに対応した層間接続プロセス」 2001年5月18日

スーパーコネクト(基調講演)

東京大学、国際・産学共同研究センター 生産技術研究所 桜井貴康 E-mail:tsakurai@iis.u-tokyo.ac.jp

Technology trend

International Technology Roadmap for Semiconductors 1999 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA)

Scaling Law

Transistors		Scaling coefficients		
V _{DD}	[V]	1/k		
Tr. dimensions	[x]	1/k		\sum
Tr. current	[l~1/x x/x V^1.3]	1/	<u> </u>	
Tr. capacitance	[C~1/x xx]	1		
Tr. delay	[d~CV/I]	1/	Ι, ι	
Tr. power	[P~VI~CVV/d]	1/k ^{1.3}		$I_{DS} = \frac{1}{21}$
Power density	[p~P/x/x]	k ^{0.7}		TOsluma
Tr. density	[n~1/x/x]	k ²		MOSFET
Interconr	nections			inverter d
Туре		Local	Global	vol25, no,
Scaling scenario		Scaled	Anti-scaled	
Line thickness	[T]	1/k	k	
Width	[W]	1/k	k	
Separation	[S]	1/k	k	
Oxide thickness	[H]	1/k	1	
Length	[L]	1/k	1	
Resistance	[Rint~L/W/T]	k	1/k ²	
Capacitance	[Cint~LW/H]	1/k	k	
RC delay/Tr. delay	[D~RintCint/d]	k ^{1.7}	-	
Current density	[J~pWL/V /W/T]	_	k ^{0.7}	

k=2 $\frac{\mu\varepsilon}{t_{ox}}\frac{W}{L} (V_{GS} - V_{TH})^{\alpha} \approx \left[\frac{1}{x x} / x V^{1.3} \right]$

&A.Newton,"Alpha-power law

model and its application to CMOS elay and other formulas", IEEE JSSC, 2, pp.584-594, Apr. 1990.

Scaling Law

Favorable effects

Size	x1/2
Voltage	x1/2
Electric Field	x1
Speed	x3
Cost	x1/4

Unfavorable effects				
Power density	x1.6			
RC delay/Tr. delay	x3.2			
Current density	x1.6			
Voltage noise	x3.2			
Design complexity	x4			

Three crises in VLSI designs

- Power crisis
- Interconnection crisis
- Complexity crisis

System on a Chip (SoC)

Re-use and sharing of design Design in higher abstraction

IP ; CPU, DSP, memories, analog, I/O, logic.. HW/FW/SW

System LSI for Games

- Clock freq. 300MHz
- 10M transistors
- Graphics synthesizer integrate
 40M tr. With embedded DRAM
- Memory bandwidth 3.2GB/s
- Floating operation 6.2GFLOPS/sec
- 3D CG 6.6M polygon/sec
- MPEG2 decode

Issues in System-on-Chip

- Un-distributed IP's (i.e. CPU, DSP of a certain company)
- Low yield due to larger die size
- Huge initial investment for masks & development
- IP testability, upfront IP test cost
- Process-dependent memory IP's
- Difficulty in high precision analog IP's due to noise
- Process incompatibility with non-Si materials and/or MEMS

Yield

Technologies integrated on a chip

DRAM embedding

DRAM Processor

System LSI

K.Sawada, T.Sakurai, et al, "A 72K CMOS Channelless Gate Array with Embedded 1Mbit Dynamic RAM," in Proc. CICC'88, pp.20.3.1-20.3.4, May 1988.

Two orders of magnitude improvement in bandwidth and power

BUT EXPENSIVE!

Micro-machined mechanical switch

G.Weinberger, "The New Millennium: Wireless Technologies for a Truly Mobile Society," ISSCC, pp.20-24, Feb. 2000.

Silicon MEMS microphone

Will soon exceed the performance of the best commercial microphones, yet be inexpensive and potentially integrated with on-chip electronics.

M.Pinto, "Atoms to Applets: Building Systems ICs in the 21st Century," ISSCC, pp.26-30, Feb. 2000.

System-in-Package

Expanding role of packaging seen relegating SoC to niche status

System-chip may topple

By Robert Ristelhueber INDIAN WELLS, CALIF. - The wheels might be coming off the systemon-chip (SoC) bandwagon, if the chatter at last week's Dataquest Semiconductor conference_is any barometer of industry sentiment. Heavyweights including IBM and Lucent Technologies indicated that costs may relegate SoC to niche status, with new packaging techniques stepping into the breach.

"A couple of years ago we really thought that the embedded DRAM model would be the panacea for many applications," said John Kelly, general manager of IBM Microelectronics. "It's not always the right thing. In many applications it still remains much cheaper to do it with multichip modules. It gives you satisfactory performance and often for lower cost."

"We have systems-on-chip now that are really 'system on chips,' " said John Dickson. president of Lucent Technologies' Microelectronics Group. "We do it that way because it's

most cost-effective, and the customer will prefer it that way because it offers more flexibility."

The subject was broached at the conference here by a Datagnest analyst who claimed that SoC designs will increasingly be supplanted in coming years by multichip packaging as higher mask costs squeeze SoC profitability.

Chip designers have often been willing to add mask steps ► CONTINUED ON PAGE 6

IBM's Kelly: 'In many apps, cheape ... as industry grapple

with impact of cores mode

By Peter Clarke and Brian Fuller

EDINBURGH, SCOTLAND - Intellectual property cores were a hot topic last week, both here at the IP99 Europe conference and at Dataquest Inc.'s annual semiconductor conference in Indian Wells, Calif. But as the industry struggles with new business

to do it with multichip modules."

In some apps, multichip modules do the job more cheaply, conference told

'System-in-package' could make SoC a niche

CONTINUED FROM PAGE 1 and complexity to their logic devices in order to place analog and memory functions onto chips. "But when we get below 0.2 micron we get a cost shock, and the [return on investment] $\sqrt{}$ will be diminished or even climinated in many cases," said Clark Fuhs, vice president and director of Dataquest's Semiconductor Manufacturing Programs.

Mask costs will dramatically rise at deep submicron because of the use of phase-shift and optical proximity correction techniques as well as more expensive, 193-nm lithography equipment, putting low-volume SoC at a cost disadvantage, Fuhs said. Militating against SoC designs for many applications is the wide disparity in revenue per square inch among the various blocks in the chip. Fuhs said. "The DSP or microproces-

sorblock can be getting \$150 or \$200 per square inch, the FPGA about \$120, the analog block about \$35, the memory block about \$50 to \$60 You're basically diluting your high-value logic pieces with all these other low-value pieces, yet you're

models, new cus adding cost because you're tomer-supplier re adding mask levels." lationships an An alternative is to fabricate

fast-moving tech the different blocks as discrete nology, there was scant agree chips, placed close together usment on either side of the At ing chip-scale packaging, Fuhs lantic on how the cores marke said. "This enables you to build the pieces in fabs that are optiwill unfold.

On one thing there was agree build analog in a 0.7-micron fab, ment: IP cores and design reus standard logic can be done in

0.35 or even 0.5 micron, and for the memory you can buy a wafer from somebody and break it up. The package is more expensive, but the overall system cost is going to be substantially less.

"The concept here is to take some level of interconnect ... and simply move [it] from the chin into the package."

Fuhs noted that Intel's Pentium III is actually an 11-level-

metal device-six levels of aluminum inside the chip and five levels of copper outside. And he showed a photograph of a Sony digital Handycam, which he said contains 20 chip-scale devices, "so this technology is here, it's real."

In the not-too-

distant future, he said, wafer foundries will give customers a choice of implementing a design either as a system-on-chip or as several discrete devices using chip-scale packaging.

To survive, the SoC must evolve to fit a more standardproduct model that would allow it to increase volume and become more cost-efficient, Fuhs said. He predicted that within five years, multichip packaging will be growing faster than SoC designs.

That view has its detractors. mized for those pieces. You can $\sqrt{}^{\circ}$ Mask sets cost in excess of a couple hundred thousand dollars, whether you do small chips or large chips," said National Semiconductor Corp., chief executive officer Brian -Halla, who has championed the notion of an information appliance-on-a-chip. "I can get tremendously more performance out of the same square inches of silicon by having it all together instead of having it two inches apart on a board.

"SoC isn't a marketing cru-

sade anymore; it's something you can do because the technology allows it." Halla added. "A very small die can contain an awful lot of functionality."

Halla noted that Intel used to say graphics shouldn't be combined with the microprocessor, because the

pace of innovation differs between those parts; but Intel's upcoming Timna processor, he said, combines both functions.

"Having said all that, there are cases where we agree [about putting a system on a package]," he said. "There is a substrategy of ours called integrated disintegration, which means ____ there are analog functions you can pull off the chip because they are such a tiny portion of the overall chip, and yet they are the most difficult thing to port to the next-generation [process] technology."

IBM's Kelly said that "SoC integration has to be done se-

National's Halla touts 'in-

SoC vs. SiP

- Smaller area
- Shorter interconnect
- Optimized process for each die (Analog, DRAM, MEMS...)
- Good electrical isolation
- Through-chip via
- Heat dissipation is an issue

System-in-Package (SIP)

K.L.Tai, "System-In-Package (SIP): Challenges and Opportunities," ASPDAC, pp.191-196, Jan. 2000

System-in-Packageの課題

• Special design tools for placement & route for codesign of LSI's and assembly

High-density reliable substrate and metallization technology

• low-cost, available known good die

(reworkablility and module testing)

Superconnect example based on three-dimensional assembly

K.Ohsawa, H.Odaira, M.Ohsawa, S.Hirade, T.Iijima, S.G.Pierce, "3-D Assembly Interposer Technology for Next-Generation Integrated Systems," ISSCC Digest of Tech. Papers, pp.272-273, Feb.2001.

Super-connect technology

Super-connect

Three crises in VLSI designs

- Power crisis
- Interconnection crisis
- Complexity crisis

DSM interconnect design issues

Larger current

IR drop (static and dynamic) Reliability (electro-migration)

Smaller geometry / Denser pattern

RC delay Signal Integrity Crosstalk noise Delay fluctuation

Higher speed Inductance EMI

Interconnect determines cost & perf.

V_{DD} , power and current trend

International Technology Roadmap for Semiconductors 1999 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA)

IR Drop

Interconnect Cross-Section and Noise

• Signal

1V 20W -> 20A current 5% noise \rightarrow 0.05V noise \rightarrow 0.02V / 20A \rightarrow 10µm thick Cu Thick layer interconnect, area pad, package are co-designed.

Interconnect parameters trend

Semiconductor Industry Association roadmap http://notes.sematech.org/1997pub.htm

RC delay and gate delay

Repeaters

Buffered interconnect delay

Power delay optimization

RC delay of global interconnections

Ever Increasing VLSI Power

(Power consumption of processors published in ISSCC)

0.5V LSIでの逆温度特性

Photograph of 32bit FA 0.3μm CMOS

K.Kanda, K.Nose, H.Kawaguchi, and T.Sakurai,"Design Impact of Positive Temperature Dependence of Drain Current in Sub 1V CMOS VLSI's",CICC99, pp.563-566, May 1999.

LSI in 2014

Year	Unit	1999	2014	Factor
Design rule	μm	0.18	0.035	0.2
Tr. Density	/cm2	6.2M	390M	30
Chip size	mm2	340	900	2.6
Tr. Count per chip (µP)		21M	3.6G	170
DRAM capacity		1G	1T	1000
Local clock on a chip	Hz	1.2G	17G	14
Global clock on a chip	Hz	1.2G	3.7G	3.1
Power	W	90	183	2.0
Supply voltage	V	1.5	0.37	0.2
Current	Α	60	494.6	8
Interconnection levels		6	10	1.7
Mask count		22	28	1.3
Cost / tr. (packaged)	µcents	1735	22	0.01
Chip to board clock	Hz	500M	1.5G	3.0
# of package pins		810	2700	3.3
Package cost	cents/pin	1.61	0.75	0.5

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA), Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA), International Technology Roadmap for Semiconductors: 1999 edition. Austin, TX:International SEMATECH, 1999.

Trend in packages

Possible electronic system in 2014

- Sensors/actutors
- 0.035µm 3.6G Si FET's with VTH & VDD control
- Locally synchronous 17GHz clock, globally asynchronous
- Chip / Package / Board system co-design for power lines, clocks, and long wires (superconnect)

水平分業と垂直統合

Assembly & Packaging

"There is an increased awareness in the industry that assembly and packaging is becoming a differentiator in product development."

International Technology Roadmap for Semiconductors, ITRS'99 p.213

Prosthesis - Dual Intraocular Units

Courtesy: Prof. Wentai Liu (North Carolina Univ.) http://www.ece.ncsu.edu/erl/faculty/wtl_data/retina.html

Stacked chips

- Smaller area
- Shorter interconnect
- Optimized process for each die (Analog, DRAM, MEMS…)
- Good electrical isolation
- Heat dissipation is an issue

藤田他、「スタックドCSP技術」、シャープ技法、1998.8

Shorter interconnect in 3-D assembly

System on a chip

h: Height between chips

Three crises in VLSI designs

- Power crisis
- Interconnection crisis
- Complexity crisis