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Abstract 
Power consumption of VLSI’s will limit the ever-

increasing trend of system integration, if it increases at 
the current rate. Thus the quest of low-power yet high-
speed realization of VLSI’s is essentially important to 
think about the scalability of MOS devices. In this 
paper, some of the recent topics for realizing low-
power yet high-speed VLSI's are described.  Focus is 
put on the approaches based on cooperation between 
levels, such as device-circuit cooperation and 
hardware-software cooperation. 

1. Introduction 
The supply voltage of VLSI’s is ever decreasing to 

assure sufficient reliability of the thin gate oxide used 
in deep submicron transistor. Although decreasing 
voltage is beneficial in decreasing power consumption, 
the power consumption of VLSI’s is still increasing as 
shown in Fig.1 and 2.  The threshold voltage, VTH, is 
to be lowered to maintain high-speed characteristics of 
MOSFET’s but the low VTH is the source of leakage 
current (Fig. 3,4).  In this sense, low-power design in 
the low supply environments is a battle against the 
ever-increasing leakage current. Moreover, other leak 
component, such as gate tunneling leakage and junction 
leakage, will be added up as shown in Fig.5.  To take 
trade-off between power and delay, many proposals 
have been made and they are categorized in Fig.6.  In 
this paper, recent development to cope with leakage 
control is summarized putting stress on cooperation 
between levels.  Other recent approaches to low-power 
and high-speed VLSI design are also described. 

2. Device-Circuit Cooperation 
Earlier proposals for suppress leakage in a standby 

mode have scalability problems as shown in Fig.7.  In 
order to mitigate the leakage problem in a standby 
mode, it is effective to insert a non-leaking power 
switch in series to a normal logic gate block operating 
at low voltage less than 1V.  The non-leaking power 
switch can be realized by a high-VTH (0.6V for 

example) MOSFET that is turned on in an active mode 
and turned off in a standby mode.  Higher voltage like 
1.5V-2.0V is applied to the gate of the MOSFET to 
achieve higher drivability and hence higher speed, 
which is called boosted gate MOS scheme (BGMOS).  
The power switch should have higher oxide thickness 
to endure the higher voltage and thus can be said the 
cooperation between technology level and circuit level.  
MOSFET’s tuned for the higher voltage is also helpful 
in SRAM, I/O and analog designs (Fig.8). 

3. Hardware-Software Cooperation 
As a countermeasure to the leakage problem in an 

active mode, dual VTH is a well known technique 
where the higher VTH is assigned to gates in non-
critical paths while the lower VTH is applied to critical 
path gates and achieves power saving of about 30%.  In 
cases, it is more effective to use VTH-hopping where 
VTH is hopping between two VTH levels in time 
through the use of back-gate bias.  For typical real-time 
multimedia applications, power saving of about 80% is 
expected.  In VTH-hopping, VTH is controlled to be a 
little higher in high-frequency mode, while in half the 
frequency mode VTH is controlled to be a little lower.  
It is responsibility of software to choose a frequency 
between the higher and the lower frequency without 
degrading the performance of an application.  In this 
sense, this scheme is based on cooperation between 
software level and circuit level.  There is an algorithm 
to guarantee real-time execution of software in 
application level and O/S level while achieving low 
power (Fig.9-18, Ref.1-5). 

Another software-hardware cooperative scheme for 
low power is bus shuffling, where bus layout is shuffled 
according to signal properties on the bus.  The bus 
layout is shuffled so as to minimize the power 
consumed by coupling capacitance among lines.  
Virtually no overhead is observed for the scheme, 
which is different from the earlier encoding schemes 
for low power. Bus shuffling needs signal pattern 
information and is applicable to special-purpose 



systems.  The power saving of about 40% is observed 
by this simple idea (Fig. 19-21, Ref.7).  Software tool is 
developed to estimate power distribution in the circuit 
(Fig.22-26, Ref.6). 

3. Other low-power and high-speed 
approaches 
Abnormal Leakage Suppression (ALS) scheme is  

effective in reducing abnormal standby current caused 
by manufacturing fluctuations in SRAM's (Fig.27-28, 
Ref.8). Interconnection delay is hindering the high-
speed VLSI realization.  If interconnect delay can be 
mitigated, supply voltage can be further reduced so that 
further low power can be achieved. Dual-rail bus 
(DRB) scheme and of staggered firing bus scheme are 
two of the schemes to cope with interconnection delay 
problems (Fig.29-35, Ref.9). 
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Fig.1 Ever Increasing VLSI Power 
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Fig.2 Trend in voltage and power (ITRS) 
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Fig.3 Power Dependence on VDD & VTH 
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Fig.4 Delay Dependence on VDD & VTH 
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Fig.6 Controlling VDD and VTH for low power 
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Fig.7 Scalability problems of early proposals 
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Fig.8 Multi Tox scheme: device-dircuit cooperative 

approach for future low-power GSI 
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Fig.9 VDD-hopping basics.  If you don’t need to 

hussle,VDD should be as low as possible 
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Fig.10 Application slicing and software feedback loop in 

Voltage Hopping 
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Fig.11 Run-time Voltage Hopping reduces power to less 
than 1/10 
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Fig.12 Measured power characteristics 
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Fig.13 Power Conscious OS & Application Slicing.  
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Fig.14 Hardware for Cooperative Voltage Scaling (CVS) 
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Fig.15 VTH-hopping basics 

VTH
controller

Freq. 
control

fCLK or fCLK/2

VBSP2

Target processor

VTH-hopping
(VTHlow&VTHhigh)

Power control block

VBSP1

VBSN2
VBSN1

VTHlow_Enable

VTHhigh_Enable

VDD

GND

VBSN

VBSP

 
Fig.16 Schematic of VTH-hopping 
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Fig.17 Microphotograph of RISC processor 
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Fig.19 Bus shuffling scheme 
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Fig.20 Proposed heuristic bus shuffling algorithm 
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Fig.21 Measured result for dual-rail bus 
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Fig.24 More than 1000 times faster heat generation 
simulator than SPICE 
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Fig.25 Numerical example of the power consumption 

estimation (or heat generation) 

300 nodes 500 nodes  
Fig.26 Experimental Results for Randomly-generated 

circuits 
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Fig.27 Whole structure of Abnormal Leakage 

Suppression (ALS) SRAM 
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Fig.28 Test chip fabricated by 0.6mm design rule. ALS 

detects 1µA order leakage current and area 
overhead is about 1% in 4Mb SRAM. 
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Fig.29 Dual-rail bus (DRB) scheme 
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Fig.30 Operation of staggered firing bus scheme 
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Fig.31 Microphotograph (0.13mm process) 

44% improved

1.27 ns
Dual-rail bus

12.2 ns
Dual-rail bus31% improved

2.25 ns

0.13µµµµm process (LINT=10mm)
conv. (w/o buffer)

17.7 ns
conv. (w/o buffer)
0.6µµµµm process (LINT=60mm)

44% improved

1.27 ns
Dual-rail bus

12.2 ns
Dual-rail bus31% improved

2.25 ns

0.13µµµµm process (LINT=10mm)
conv. (w/o buffer)

17.7 ns
conv. (w/o buffer)
0.6µµµµm process (LINT=60mm)

To make the comparison fair, line width and spacing are 
doubled for the conventional scheme (w/o buffer).  

Fig.32 Measured result for dual-rail bus 
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Fig.33 Measured result of staggered firing bus 
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Fig.34 SPICE estimation of benefit of dual-rail bus 

scheme for the future 
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