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Abstract

Power consumption of VLS’s will limit the ever-
increasing trend of systemintegration, if it increases at
the current rate. Thus the quest of low-power yet high-
speed realization of VLS’s is essentially important to
think about the scalability of MOS devices. In this
paper, some of the recent topics for realizing low-
power yet high-speed VLS's are described. Focus is
put on the approaches based on cooperation between
levels, such as devicecircuit cooperation and
har dwar e-softwar e cooper ation.

1. Introduction

The supply voltage of VLSI's is ever decreasing to
assure sufficient reliability of the thin gate oxide used
in deep submicron transistor. Although decreasing
voltage is beneficial in decreasing power consumption,
the power consumption of VLSI's is still increasing as
shown in Fig.1 and 2. The threshold voltage, VTH, is
to be lowered to maintain high-speed characteristics of
MOSFET’s but the low VTH is the source of leakage
current (Fig. 3,4). In this sense, low-power design in
the low supply environments is a battle against the
ever-increasing leakage current. Moreover, other leak
component, such as gate tunneling leakage and junction
leakage, will be added up as shown in Fig.5. To take
trade-off between power and delay, many proposals
have been made and they are categorized in Fig.6. In
this paper, recent development to cope with leakage
control is summarized putting stress on cooperation
between levels. Other recent approaches to low-power
and high-speed VLS| design are also described.

2. Device-Circuit Cooperation

Earlier proposals for suppress leakage in a standby
mode have scalability problems as shown in Fig.7. In
order to mitigate the leakage problem in a standby
mode, it is effective to insert a non-leaking power
switch in series to a normal logic gate block operating
at low voltage less than 1V. The non-leaking power
switch can be redized by a high-VTH (0.6V for

example) MOSFET that is turned on in an active mode
and turned off in a standby mode. Higher voltage like
1.5V-2.0V is applied to the gate of the MOSFET to
achieve higher drivability and hence higher speed,
which is called boosted gate MOS scheme (BGMOS).
The power switch should have higher oxide thickness
to endure the higher voltage and thus can be said the
cooperation between technology level and circuit level.
MOSFET’ s tuned for the higher voltage is aso helpful
in SRAM, 1/O and analog designs (Fig.8).

3. Hardwar e-Softwar e Cooper ation

As a countermeasure to the leakage problem in an
active mode, dua VTH is a well known technique
where the higher VTH is assigned to gates in non-
critical paths while the lower VTH is applied to critical
path gates and achieves power saving of about 30%. In
cases, it is more effective to use VTH-hopping where
VTH is hopping between two VTH levels in time
through the use of back-gate bias. For typica rea-time
multimedia applications, power saving of about 80% is
expected. In VTH-hopping, VTH is controlled to be a
little higher in high-frequency mode, while in haf the
frequency mode VTH is controlled to be a little lower.
It is responsibility of software to choose a frequency
between the higher and the lower frequency without
degrading the performance of an application. In this
sense, this scheme is based on cooperation between
software level and circuit level. There is an agorithm
to guarantee red-time execution of software in
application level and O/S level while achieving low
power (Fig.9-18, Ref.1-5).

Ancther software-hardware cooperative scheme for
low power is bus shuffling, where bus layout is shuffled
according to signd properties on the bus. The bus
layout is shuffled so as to minimize the power
consumed by coupling capacitance among lines.
Virtualy no overhead is observed for the scheme,
which is different from the earlier encoding schemes
for low power. Bus shuffling needs signal pattern
information and is applicable to specia-purpose



systems. The power saving of about 40% is observed
by thissmpleidea (Fig. 19-21, Ref.7). Softwaretool is
developed to estimate power distribution in the circuit
(Fig.22-26, Ref.6).

3. Other low-power and high-speed
approaches

Abnorma Leakage Suppression (ALS) scheme is
effective in reducing abnormal standby current caused
by manufacturing fluctuations in SRAM's (Fig.27-28,
Ref.8). Interconnection delay is hindering the high-
speed VLSI redlization. If interconnect delay can be
mitigated, supply voltage can be further reduced so that
further low power can be achieved. Dual-rail bus
(DRB) scheme and of staggered firing bus scheme are
two of the schemes to cope with interconnection delay
problems (Fig.29-35, Ref.9).
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Fig.11Run-time V oltage Hopping reduces power to less
than 1/10
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Von=0.5V 2 1 -
= 0.35pm process I - -
% ?I 5 :/’ =0V
& Delay < g o
< ° DD~ V-

1 £ o |0.35um process
o &3 .
-4 1 - Ros|— — Fixed Vq,
5] g E Dynamic
§_ Leakage power S Vry control
5 2 g <
g L
= Dynamic power g
g 1 £
s 02 0
001 0 0.1 0.2 0 05
Normalized workload
Threshold voltage : Vp, [V]
Fig.15V TH-hopping basics
VTHlow_Enable
1
VTHhigh_Enable
Vay-hopping
V. (VTH|0W&VTHhigh)
-
controllel 4 Vaep
Vb P p ]
VBSPI v,
DD
VBSNz_H_—l | GND
*—> Vesn—*
Freq. Vesn
control__JJ
fc,_l( or fe /2
.

Target processor
Power control block

Fig.16Schematic of V TH-hopping

0.6pum process

Overhead of

Vr-hopping
=14%

RISC core
=2.1mm x 2.0mm
Vs selector

1 =0.2mm x 0.6mm

Fig.17Microphotograph of RISC processor

1
Leakage power
g Dynamic power
S Vpp=0.5V
3 Viiow=0V
N 94% f/2 operation
® 05
g
o
z
0— - —
Fixed Vqy Dual Vq; Vqy-hopping  Vy-hopping
Fixed freq. + Dual Vo

Fig.18Power comparison



o— o— — 9 — 9
hd ‘I'l hd 1 T 1

I Transmitter “ Receiver I Transmitter “ Receiver

Fig.19Bus shuffling scheme

b b,

00011110 0011110 0011110 0011110 0011110
01110001 1110001 1110001 1110001 1110001
time | 00110000 » 0110000 » 0110000 » 0110000 0110000 »
01001111 1001111 1001111 1001111 1001111
10000111 0000111 0000111 0000111 0000111
line with line with line with
highest highest positive  highest positive
transition prob. switching switching
correlation with correlation with
bs Be prbo
0011110 0000111

1110001 1110000 partial order of
this cluster;

0110000 0010000 bobebs
1001111 1100111 )
0000111 1001101

Fig.20Proposed heuristic bus shuffling algorithm

Deta=3
Qeta=4

meta=5 n=
meta=infinity

% saving
1

L 11 1 r
Fig.21Measured result for dual-rail bus

« Reliability problem
« Current density in metal lines increases
« Temperature of interconnect increases
¢ MTF (Mean Time to Failure) decreases
« Problem of power distribution estimation

RER S|

T Model order reduction T T

_ b(s=ky)
! "
E=R[ 2 dt o (S=p)(S—p,)

Fig.22Power Distribution Estimation

I

e« Theorem
« If the Laplace transform of a time-domain
signal j(t), denoted by J(s), has q simple poles in
the left half of the s-plane,

§ Fwd=3 1)

r;: residue of J(s) at the pole p; of J(s)
Fig.23Fundamental theory in Power Distribution
Estimation

o Prototype tool
e SPICE-in and power-out

« Moment matching-based model order
reduction

o Estimation accuracy
e Source of error: area under the square of j(t)
o« Comparison with SPICE

T.
E=RJ; j2(t) dt

Fig.24More than 1000 times faster heat generation
simulator than SPICE

c9 C10
T 1260 Toz

Avg Max.

Resistor R1 R2 R3 R4 RS R6 R7 R8 R9 R10
error error

SPICE 512 | 842 | 088 | 242 | 176 | 024 | 043 | 001 | 554 | 005

1-pole 312 | 718 | 089 | 243 | 176 | 024 | 041 | 001 | 469 | 004 | 94% | 39.1%

2-poles | 481 | 839 | 088 | 242 | 176 | 024 | 044 | 001 | 553 | 005 | 12% 5.9%

3-poles | 496 | 838 | 088 | 242 | 176 | 024 | 043 | 001 | 550 | 005 | 05% 32%

Fig.25Numerical example of the power consumption
estimation (or heat generation)

ordar modsl (7

wioh seduces

Easzgy btainsd

1o [ 21 00 e [y =
Booray abtained with seIce (7l Bneroy obtained with SEICE (7]

8 )

300 nodes 500 nodes
Fig.26Experimental Results for Randomly-generated
circuits
Vbp 1 ?
|Sensor]| |Sensor]|

Vbp

Shift register

: » Fuse
[Sensorf{orr - CellvDD/Tr;F |

= Cell
E : E 3 @l eoccee : Ace”
. H L = HEH rray
SensorDF II_ Cell Vpp ﬂ |

row sensors output
Fig.27Whole structure of Abnormal L eakage
Suppression (ALS) SRAM



. . \ 0.6um process (L, ;=60mm)
o B 9 conv. (w/o buffer) |31% improved | pyal-rail bus
o < —
25 e + 3 17.7ns 12.2 ns
QP |- n >
17 I P Ry
0P |e =y 8
2 o .. = gx) 0.13pm process (L=10mm)
= @ -
S = 5 e < conv. (w/o buffer) |44% improved | pyal-rail bus
D¢ s 2w
" T o 2.25ns C———>|127ns
s F 256 T2
o : = M To make the comparison fair, line width and spacing are
e o doubled for the conventional scheme (w/o buffer).
A % e 2 TN e . .
= “"‘ T ke Fig.32Measured result for dual-rail bus
Pt
. sssssssssnes _ Y 15
Fig.28Test chip fabricated by 0.6mm design rule. ALS 13 measured :
detects 1pA order leakage current and area — SPICE 1
overhead is about 1% in 4Mb SRAM. glé;é w
=R =
z > Conventional
K o
S Conventional 3
211 2 0.5
53] 0.6pum process 0 0.13um process
Lny=60mm Lr=10mm
Vpp=3.3V Vpp=1.2V
19 1 2 3 % 01 o0z 03 o4
Firing delay [ns] Firing delay [ns]

Fig.33Measured result of staggered firing bus

. . 1
® Two buffered interconnects per bit W s
- ‘y 0.8 proposed o o
_ All nodes pefore B1 and B2 are kept ‘0’. 8 B (dual-rail bus) & B'H =
Fig.29Dual-rail bus (DRB) scheme 212 06 ' conventional == =
_ _ EHE (wio buffer) S5
1stregion 2nd region =5 04
—|Q .
©|Q i
. A\ & o2 |—°“'p
%—DC DC Global —f
—_— o )
005 01 015 02 025 nerconnect

|
YYYYY

Staggered firing bus delay

Design rule [pm]
Fig.34SPICE estimation of benefit of dual-rail bus
scheme for the future

VS
A D°_\_
-/_1>°—l>c_\_>~‘_
D> D>

direchonat bes [duasl-ral ba

1

conventional

a—a o, —1 =with buffer (repeater)

but w/o staggered
firing buffer

P e Do
SFB  conv.

o
1)

o
o

Chip

Global /7‘
0

005 01 015 02 025 nterconnect
Design rule [um]

Fig.35SPICE estimation of benefit of staggered firing

bus scheme for the future

o
)

Conventional bus delay
o
N

B 0.13um CMOS process

® 10mm bus length

m 5 buffers (dual-rail bus), 11 buffers (staggered firing bus)
Fig.31Microphotograph (0.13mm process)



