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Abstract Superconnect technology which is based on interconnections around 10um design rule is expected to realize new
realm of electronic system integration together with System-on-a-Chip approaches. The superconnect technology will be
helpful in solving deep submicron (DSM) interconnection issues of VLSI's such as IR voltage drop and RC delay problems.

The accumulated knowledge database on board and package will be also useful in confronting DSM interconnection issues like
inductive effects.
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1. Abstract

Superconnect  technology which is based on
interconnections around 10um design rule is expected to
realize new ream of electronic system integration
together with System-on-a-Chip approaches. The
superconnect technology will be helpful in solving deep
submicron (DSM) interconnection issues of VLSI's such
as IR voltage drop and RC delay problems. The
accumulated knowledge database on board and package
will be also useful in confronting DSM interconnection
issues like inductive effects.

2. Scaling and I'ssues of Current LSl Technology

Taking aclose look at the scaling law, we can see that
the following three crises are leaning over the LSI
technology.

* Power crisis

* Interconnection crisis

» Complexity crisis

The power crisisis depicted in Fig.2. Lower operation
voltage naturally increases operation current, which in
turn requires thicker metal layers for the current to be
distributed throughout the chip without IR-drop. One of
the key approaches to low-power design is the memory
embedding. By embedding memories, inter-chip
communication power can be reduced by two orders of
magnitude. The memory embedding, however, is an
expensive option, since it increases process steps. A
new system-level integration can be a solution to this
problem.

As for the interconnection crisis, RC delay increase
and IR-drop issue are some of the more stringent issues.
Thicker metal layer used in an interposer/package/board
may mitigate the problem.

Complexity crisis can only be solved by re-use of the
pre-designed blocks and designing at higher abstraction
level. Thus, System-on-a-Chip (SoC) where many
pre-designed IP's are amalgamated at the higher
abstraction is one of the candidates to cope with the
complexity crisis. Future electronic systems, however,
cannot be built only with the SoC, since many SoC issues
have become evident as follows.

» Huge initial investment for masks & development

* Un-distributed IP's (i.e. CPU, DSP of a certain

company)

 |Ptestability, upfront 1P test cost

* Process-dependent memory IP's

« Difficulty in high precision analog IP's due to noise

e Process incompatibility with non-Si materials
and/or MEMS
The huge investment in developing the SoC process
to embed different kinds of technologies is one of the
most vital issues.

3. Superconnect

Recently, however, a new system-level integration
called 'superconnect’ is attracting attention[1-4], which
may solve SoC problems. The superconnect connects
separately built and tested chips not by printed circuit
boards but rather directly to construct high-performance
yet low-cost electronic systems. The superconnect may
use around 10 micron level design rules [4]. Sometimes

LSlI's in the superconnect are connected in
three-dimensional fashion to achieve the higher
performance and the smaller geometry.

System-in-a-Package (SiP) composed of stacked chips
using bonding or interposers is one readlization of the
superconnect. The superconnect mitigate [R-drop
problems and RC delay problems.

There has been a large gap between on-chip and
off-chip interconnects in terms of power, density,
performance, cost and turn-around-time. Basically, the
large gap comes from the big difference between the
design rules of on-chip and off-chip interconnects. It
can be said that there is a technology vacuum at present
between 1um level on-chip interconnect and 100um level
off-chip interconnect. The superconnect will fill the gap
between on-chip and off-chip interconnect, making use of
10um level design rule.

Some of the important issues in the future
system-level integration are as follows.

¢ Specia design tools for placement & route for

co-design of LSI’s and assembly

« High-density reliable substrate and metallization

technology

* low-cogt, available known good die (reworkablility

and module testing)

4. |ssuesin Deep Sub-Micron (DSM) Interconnects
The issues for DSM interconnects are summarized as
follows:

Larger current
IR drop (static and dynamic)
Reliability (electro-migration)
Smaller geometry / Denser pattern



RC delay

Signa Integrity

Crosstalk noise

Delay fluctuation
Higher speed

Inductance

EMI

Among others, IR drop and RC delay problems can have
help from the superconnect technology. To fully utilize
the merit of the thick metal layers of superconnect,
co-design of VLSI and assembly will be necessary. As
for inductive effects which appear in low resistance
interconnects in VLSI's such as clock lines, power lines
and wide buses, the knowledge accumulated in board and
package designs will be transferred to VLS| community.
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Issues in System-on-Chip

Un-distributed IP’s (i.e. CPU, DSP of a certain company)

Low yield due to larger die size

Huge initial investment for masks & development

IP testability, upfront IP test cost

Process-dependent memory IP’'s

Difficulty in high precision analog IP’s due to noise

Process incompatibility with non-Si materials and/or

MEMS

SoC vs. SiP

System in a Package

« Smaller area

« Shorter interconnect

« Optimized process for
MEMS...)

« Through-chip via

* Heat dissipation is an
issue

Chip
Heat spreader/
—| S ——————— 3
[ 1 | |

Superconnect example based on
three-dimensional assembly

Heat Sink
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Interposer Technology for Next-Generation Integrated Systems,” ISSCC Digest of
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each die (Analog, DRAM,

« Good electrical isolation



Issues in superconnect

« Special design tools for placement & route for co-

design of LSI's and assembly

« High-density reliable substrate and metallization

technology

* Low-cost, available known good die

(reworkablility and module testing)

Technologies integrated on a chip
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RF : Radio Frequency
FPGA : Field Programmable Gate Array Year
MEMS : Micro Electro Mechanical Systems

FeRAM : Ferroelectric RAM
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New system level integration

SoC : High-performance but issues remain

Printed circuit board (PCB) : Low-performance

New system level integration : Superconnect

- Connects separately built and tested chips not by the
PCB but rather directly to construct high-performance
yet low-cost electronic systems

- May use around 10 micron level design rules
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DSM interconnect design issues

Larger current
IR drop (static and dynamic)
Reliability (electro-migration)

Smaller geometry / Denser pattern
RC delay
Signal Integrity
Crosstalk noise
Delay fluctuation

Higher speed
Inductance
EMI
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IR Drop
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zlu=l, Sheet resistance=R
Take IR as unity voltage drop

Interconnect Cross-Section and Noise

Unscaled / anti-scaled
« Clock
e Long bus
« Power supply
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Skin Depth and R Increase Reverse temperature dependence
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Inductive Effects in Clock Lines Possible electronic system in 2014
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