Variable Threshold Voltage CMOS in Series Connected Circuits

T. Inukai, T. Hiramoto and T. Sakurai

Institute of Industrial Science, the University of Tokyo, Japan

Outline

- Background and objective
- Body effect factor and its relationship with device characteristics
- Device design in VTCMOS
 - Single devices
 - Series connected circuits
- Effect of velocity saturation
- Summary

Explosion of Stand-by Power

Scaling of V_{th} with V_{dd} causes an increase of off-current.

Circuits with single (or fixed) V_{th} will fail due to explosion of stand-by power consumption.

Variable Threshold Voltage CMOS

Utilizing the body effect, V_{th} is controlled by V_{bs} .

What determines ΔV_{th} ?

[ref.] T. Kuroda et al. IEEE JSSC, 31, 1770 (1996).

Objective

- Investigation of optimum device design in variable threshold voltage CMOS (VTCMOS) by means of device simulation from the viewpoints of
 - Device performance (single device)
 - Circuit performance (series connected circuit)

Guideline for device design in VTCMOS

Outline

- Background and objective
- Body effect factor and its relationship with device characteristics
- Device design in VTCMOS
 - Single devices
 - Series connected circuits
- Effect of velocity saturation
- Summary

Body Effect Factor

V_{th} is varied by the body effect

We did not use this definition!

- Valid only for uniformly-doped MOSFET

- Hard to estimate ΔV_{th} (Unit is V^{1/2})

Definition of Body Effect Factor

$$\gamma \!\equiv\! \frac{\left| \Delta \mathbf{V}_{th} \right|}{\left| \Delta \mathbf{V}_{bs} \right|}$$

Then,
$$\Delta V_{th} = \gamma |\Delta V_{bs}|$$

Moreover, $\gamma \approx \frac{C_d}{C_{ox}}$

(C_d: depletion cap., C_{ox}: oxide cap.)

Good approximation in - super steep retrograde profile - very low △V_{bs}

- Directly related to ΔV_{th}
- Applicable to any devices
- Also related to device performance

Relation between Device Performance and γ(1)

(for long channel device)

$$S = 60(1 + \frac{C_d}{C_{ox}})$$
$$\gamma \approx \frac{C_d}{C_{ox}}$$

$$\Rightarrow \mathbf{S} \approx \mathbf{60(1+\gamma)}$$

	small γ	large γ
S factor	small	large
V _{th} *	low	high

* for fixed loff

Trade-off between V_{th} Control and Device Performance

Larger γ device can achieve larger ΔV_{th}

trade-off

Larger γ device has lower I_{on} due to - larger S factor (→ higher V_{th}) - smaller transconductance (g_m)

How should we design the device in VTCMOS?

Systematical investigation by means of device simulation

Outline

- Background and objective
- Body effect factor and its relationship with device characteristics
- Device design in VTCMOS
 - Single devices
 - Series connected circuits
- Effect of velocity saturation
- Summary

Simulation Procedure

- With fixed I_{off,standby}, I_{on,active} is compared.

- γ and $|\Delta V_{bs}|$ are varied separately.

How can we achieve higher on-current?

- t_d is varied to change γ .
- N_s is varied to change V_{th} so that $I_{off,standby}$ would be fixed for given $|\Delta V_{bs}|$.
- Non-doped layer (5nm thick) is inserted to avoid inaccuracy of model for impurity dependence of mobility.

γ Dependence of On-current

I_{off,standby} = 0.1pA/μm (const.)

Design Methodology in VTCMOS - Single Devices -

Contradictory to the conventional methodology, γ should be as large as possible in VTCMOS when $|\Delta V_{bs}| > V_0$ from the viewpoints of $I_{on,active}$.

Outline

- Background and objective
- Body effect factor and its relationship with device characteristics
- Device design in VTCMOS
 - Single devices
 - Series connected circuits
- Effect of velocity saturation
- Summary

Series Connected Circuits

Some source nodes are not connected to GND lines but floating.

Negative substrate bias (V_{bs} < 0V) occurs even in active mode.

Circuit performance is deteriorated by the body effect.

Advantage of large γ device in VTCMOS might be cancelled out in series connected circuits.

TI

Further investigation in consideration of the series connected circuits

Evaluation of Performance in Series Connected Circuits

Degradation Factor : F_d

[ref.] T. Sakurai et al. IEEE JSSC, 26, 122 (1991).

On- and Off-currents in Series Connected Circuits

Worst case off-current is almost same as off-current of single devices.

Same boundary condition (fixed loff,stanby) can be used.

γ Dependence of *On*-current in Series Connected Circuits

γ Dependence of F_d

• Utilizing VTCMOS, F_d decreases in each γ value.

• As $|\Delta V_{bs}|$ increases above another critical value (V_o* ~ 1.2V), γ dependence of F_d changes.

 \implies Larger γ device has smaller F_d !?

Effect of Lowering V_{th}

• With the constant V_{th} , larger γ has larger F_d .

• In any γ values, lowering V_{th} results in decrease of F_d.

Design Methodology in VTCMOS - Series Connected Circuits -

On-current in the series connected circuits

VTCMOS can not only enhance I_{on} but also reduce F_d by lowering V_{th} .

Larger enhancement of Ion in the series connected circuits

Larger γ device can achieve lower V_{th,active}, resulting in smaller F_d.

Advantage of large γ device in VTCMOS is not cancelled out but rather enhanced in the series connected circuits.

Outline

- Background and objective
- Body effect factor and its relationship with device characteristics
- Device design in VTCMOS
 - Single devices
 - Series connected circuits
- Effect of velocity saturation
- Summary

Effect of Velocity Saturation

As V_{th} decreases, V_{dsat} only slightly increases due to velocity saturation phenomenon.

Mechanism of F_d Reduction

Summary

• VTCMOS characteristic is systematically investigated by means of device simulation.

• From the viewpoint of device performance, larger γ device can achieve higher *on*-current, when $|\Delta V_{bs}|$ is larger than a certain critical value.

• Lowering V_{th} alleviates the degradation due to the series connected configuration. Therefore, when $|\Delta V_{bs}|$ is applied to some extent, larger γ device has higher *on*-current even in the series connected circuits.

• These characteristics are attributed to the velocity saturation phenomenon which makes the drain saturation voltage less sensitive to V_{th}.