Estimation of Power Distribution in VLSI Interconnects

Youngsoo Shin and Takayasu Sakurai Center for Collaborative Research Univ. of Tokyo, Japan

Contents

- Introduction
- Model order reduction
- Power distribution estimation
- Experimental results
- Driver modeling
- Conclusion

Introduction

Scaling in VLSI

- Decreasing gate length, gate oxide, supply voltage
- Increasing speed, cost-performance

• Unfavorable effects due to VLSI scaling

- Increasing power density
- Complexity of system and design
- Interconnect related issues: delay, current density, noise

Introduction

Deep submicron interconnects

- Decreasing metal pitch
- Increasing aspect ratio
- Increasing metallization levels
- Increasing line resistance and wire-to-wire capacitance

Problems and issues

- Smaller geometry and denser pattern: RC delay, signal integrity, crosstalk noise, delay fluctuation
- Larger current: IR drop and reliability (electromigration)

Introduction

Reliability problem

- Current density in metal lines increases
- Temperature of interconnect increases
- MTF (Mean Time to Failure) decreases

Problem of power distribution estimation

Model Order Reduction

Model order reduction

 Reduce the circuit to a smaller representation consisting of dominant poles from the original circuit

Model Order Reduction

Moment matching-based

$$\hat{H}(s) = \frac{n_{q-1}s^{q-1} + n_{q-2}s^{q-2} + \dots + n_1s + n_0}{s^q + d_{q-1}s^{q-1} + \dots + d_1s + d_0} = m_0 + m_1s + \dots + m_{2q-1}s^{2q-2}$$
$$\hat{H}(s) = \sum_{i=1}^q \frac{r_i}{s - p_i} \iff \hat{h}(t) = \sum_{i=1}^q r_i e^{p_i t}$$

Power distribution estimation of interconnect

- Given a linear(ized) RLC circuits
- Find power consumption of each resistor branch of interconnect

Definition of problem

- Given a reduced-order model of current at each resistor branch $J(s) = \sum_{i=1}^{q} \frac{r_i}{s - p_i}$
- **Derive** $E = R \int_0^\infty j^2(t) dt$

Theorem 1

 If the Laplace transform of a time-domain signal j(t), denoted by J(s), has q singularities in the left half of the s-plane,

$$\int_0^\infty j^2(t)dt = \sum_{i=1}^q r_i$$

 r_i : residue of J(-s)J(s) at the singularity of J(s)

S-plane

×

×

-T

Sketch of proof

 $\int_0^\infty j^2(t)dt = \left[\int_0^\infty j^2(t)e^{-st}dt\right]_{s=0}$ $= \left[L\{j(t) j(t)\} \right]_{s=0}$ $= \boxed{\frac{1}{2\pi i} \lim_{T \to \infty} \int_{\alpha \to iT}^{\gamma + iT} J(s - \omega) J(\omega) d\omega}$ $=\frac{1}{2\pi i}\lim_{T\to\infty}\int_{\omega}^{\gamma+iT}J(-\omega)J(\omega)d\omega$ = \sum (residue of J(-s)J(s)) singularity of J(s)

• Example

$$J(s) = \frac{s+3}{(s+1)^2} = \frac{2}{(s+1)^2} + \frac{1}{s+1} \quad \longleftrightarrow \quad j(t) = 2te^{-t} + e^{-t}$$

$$J(-s)J(s) = \frac{(-s+3)(s+3)}{(s-1)^2(s+1)^2} = \frac{2}{(s-1)^2} - \frac{\frac{5}{2}}{s-1} + \frac{2}{(s+1)^2} + \frac{\frac{5}{2}}{s+1}$$
$$\int_0^\infty j^2(t)dt = \int_0^\infty (2te^{-t} + e^{-t})^2 dt = \frac{5}{2}$$

Theorem 2

 If the Laplace transform of a time-domain signal j(t), denoted by J(s), has q simple poles in the left half of the s-plane,

$$\int_{0}^{\infty} j^{2}(t)dt = \sum_{i=1}^{q} r_{i}J(-p_{i})$$

 r_i : residue of J(s) at the pole p_i of J(s)

• Example

$$J(s) = \frac{3s+5}{s^2+3s+2} = \frac{2}{s+1} + \frac{1}{s+2} \quad \longleftrightarrow \quad j(t) = 2e^{-t} + e^{-2t}$$

$$J(-p_1) + r_2 J(-p_2) = 2(1+\frac{1}{3}) + 1(\frac{2}{3}+\frac{1}{4}) = \frac{43}{12}$$
$$\int_0^\infty j^2(t) dt = \int_0^\infty (2e^{-t} + e^{-2t})^2 dt = \frac{43}{12}$$

Prototype tool

- SPICE-in and power-out
- Moment matching-based model order reduction
- Estimation accuracy
 - Source of error: area under the square of j(t)
 - Comparison with SPICE

$$E = R \int_0^T j^2(t) dt$$

• Numerical example

Resistor	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	Avg. error	Max. error
SPICE	5.12	8.42	0.88	2.42	1.76	0.24	0.43	0.01	5.54	0.05		
1-pole	3.12	7.18	0.89	2.43	1.76	0.24	0.41	0.01	4.69	0.04	9.4%	39.1%
2-poles	4.81	8.39	0.88	2.42	1.76	0.24	0.44	0.01	5.53	0.05	1.2%	5.9%
3-poles	4.96	8.38	0.88	2.42	1.76	0.24	0.43	0.01	5.50	0.05	0.5%	3.2%

• Numerical example

Resistor	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	Avg.	Max.
											error	error
SPICE	5.12	8.42	0.88	2.42	1.76	0.24	0.43	0.01	5.54	0.05		
1-pole	3.12	7.18	0.89	2.43	1.76	0.24	0.41	0.01	4.69	0.04	9.4%	39.1%
2-poles	4.81	8.39	0.88	2.42	1.76	0.24	0.44	0.01	5.53	0.05	1.2%	5.9%
3-poles	4.96	8.38	0.88	2.42	1.76	0.24	0.43	0.01	5.50	0.05	0.5%	3.2%

1-pole approximation

- Area under j(t) and $\hat{j}(t)$ is the same
- Area under j²(t) and j²(t) depends on peakness and skewness of j(t)

Randomly-generated circuits

Driver Modeling

- Verify simple linear region resistance approximation for power distribution estimation
- Well below 10% both for max and avg error

Conclusion

- Power distribution is important for deep submicron interconnects
- Establish theoretical background for power distribution analysis of VLSI interconnects
- Develop and verify a simple driver model
- Future work
 - Fast yet accurate method
 - Investigation of accurate driver model