Study of Short Channel Effect on the characteristics of a VTCMOS
IIS, Univ. of Tokyo. OHyunsik Im, T. Inukai, T. Sakurai\%, and T. Hiramoto\#
Also \% CCR, Univ. of Tokyo and \# VDEC, Univ. of Tokyo
Email: im@nano.iis.u-tokyo.ac.jp

The performance of a Variable threshold voltage CMOS (VTCMOS) is mainly determined by the body effect factor (γ) informing that how sensitively the threshold voltage changes (ΔV_{th}) under substrate bias (V_{bs}), the sub-threshold slope (S), and relation between γ and S \cite{1}\cite{2}. In this study, we present the study of the short channel effect on γ and S, and resulting performance degradation of a VTCMOS.

Fig 1 shows the analytically calculated γ at $V_{bs}=-1\text{V}$ and S at $V_{bs}=0\text{V}$ for uniformly doped VTCMOSs with various channel lengths. For the calculations, the substrate doping concentration (N_a) changes from $3\times10^{17} \text{cm}^{-3}$ to $6\times10^{18} \text{cm}^{-3}$. Larger γ corresponds to higher N_a. The thick and dotted lines represent the relation between $\gamma - S$ with no SCE and with SCE, respectively. The solid curves represent the contour lines of the N_a values used for each calculation. As L becomes shorter or N_a becomes lower, γ decreases whilst S increases.

New empirical relation between γ and S taking into account the SCE can be expressed as:

$$S = \frac{dS}{d\gamma} (\gamma - 0.8) + 115 \text{ in the unit of mV/decade}, \quad (1)$$

where $dS/d\gamma$ is the slope in the $\gamma - S$ plane, and is around 70mV/decade for a long channel VTCMOS. As the SCE takes place, $dS/d\gamma$ decreases. Thus, $dS/d\gamma$ can be used as an indicator showing the strength of the SCE. Fig 2 shows the calculated relative $I_{on}(\alpha)$ with different $dS/d\gamma$ values in (1), 70 and 45 mV/decade respectively, as a function of V_{bs} and γ. For both calculations, $I_{off}(\alpha)$ is fixed at 0.1pA/μm and other modeling parameters are the same. Note again that smaller value of $dS/d\gamma$ implies worse SCE. As clearly demonstrated in this comparison, $I_{on}(\alpha)$ calculated with larger $dS/d\gamma$ is more enhanced at any given γ and V_{bs}, relative to that with smaller $dS/d\gamma$. It is certain that the $I_{on}(\alpha)$ enhancement is due to the improved sub-threshold slope (S) at given values of γ and V_{bs}. We have also found that the characteristic V_{th} referred as V_{th}, where $I_{on}(\alpha)$ looks rarely-dependent on γ, decreases with decreasing $dS/d\gamma$. Its physical origin will be discussed.