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Abstract 
In this paper, methods to achieve low-power and 

high-speed VLSI's are described with the emphasis on 
cooperation between levels.  To suppress the leakage 
current in a standby mode, Boosted Gate MOS 
(BGMOS) is effective, which is based on cooperation 
between technology level and circuit level.  To reduce 
the power in an active mode, VDD-hopping and VTH-
hopping are promising, which are cooperative 
approaches between circuit and software.  Power 
consumed in interconnect system is another issue in 
low-voltage deep-submicron designs.  A cooperative 
approach between VLSI and assembly to the 
interconnect power problem is also discussed. 

1. Introduction 
Power consumption of VLSI's is ever increasing as 

is shown in Fig.1 and could be a stumbling block in 
realizing giga-scale integration.  The power 
consumption of CMOS VLSI's consists of a dynamic 
charging and discharging current component and a 
leakage current component shown in Fig.2.  Various 
effective techniques to mitigate the power problem 
have been proposed at a level of system, algorithm, 
software, CAD, circuit, technology and assembly.  
There still remains effective ways to reduce the power 
consumption through cooperation between levels, 
which have not been pursued so rigorously because 
usually it is not easy to establish a cooperative 
mechanism among different levels of engineers.  The 
treasured sword of CMOS scaling, however, may come 
to an end due to the power problem and every endeavor 
to decrease power consumption will be required in the 
future. 

The supply voltage, VDD, is ever decreasing to 
ensure sufficient reliability of VLSI’s with thin gate 
oxide used in deep submicron transistors.  Low-power 
design in the low- VDD environments is a battle against 

the ever-increasing leakage current due to the use of 
low threshold voltage, VTH, to realize high-speed 
VLSI's.  Since low-VDD and high-VTH are advantageous 
for low power consumption but disadvantageous for 
speed, there should be some controlling scheme among 
VDD, VTH and speed.  Most of the controlling schemes 
can be categorized in a tabulated form as in Fig.3.  In 
the table, multiple VDD and multiple VTH signify spatial 
assignment of VDD and VTH, while variable VDD and 
variable VTH correspond to temporal assignment of VDD 
and VTH. 

Historically well-known techniques to control VDD 
and VTH are MTCMOS (Multi-Threshold CMOS) and 
VTCMOS (Variable Threshold CMOS) [1-3] but these 
schemes will not be able to stand in the future as shown 
in Fig.4.  In this paper, Boosted Gate MOS (BGMOS) 
is described to cope with the standby current increase 
due to the use of low VTH, which is a cooperative 
approach between a technology level and a circuit level.  
As for the power reduction in an active mode, VDD-
hopping and VTH-hopping are introduced, which are 
cooperative approaches between circuit and software.  
Lastly, the paper touches on an interconnect power 
problem by buffer insertion. 

2. Cooperation between technology and 
circuit: BGMOS 

In order to mitigate the leakage problem in a standby 
mode, it is effective to insert a non-leaking power 
switch in series to a leaky yet high-speed logic gate 
block made of low-VTH MOSFET's.  The basic idea is 
the same as MTCMOS but MTCMOS becomes slow 
when VDD gets less than 1V and stops operating when 
VDD gets less than 0.5V.  This is because the non-
leaking power switch can be realized by a high-VTH 
(0.6V for example) MOSFET that is turned on in an 
active mode and turned off in a standby mode. 

The problem of MTCMOS is solved if higher 
voltage around 1.5V-2.0V is applied to the gate of the 



power switch MOSFET.  The higher voltage achieves 
higher drivability and hence higher speed. This scheme 
is called boosted gate MOS scheme (BGMOS) as 
shown in Fig.6 [4].  The power switch should have 
higher oxide thickness to accommodate the higher 
voltage on the gate.  A technology side provides a 
thicker oxide transistor, while designers think about 
using the different type of transistors and thus the 
scheme can be said cooperation between a technology 
level and a circuit level.  MOSFET's tuned for the 
higher voltage is also helpful in SRAM, I/O and analog 
designs as shown in Fig.8.  The thicker oxide is also 
beneficial to decrease leakage current caused by direct 
tunneling though oxide of the power switch (see Fig.5). 

It should be noted that there is an optimum thickness 
for the oxide of the power switch and thus there is 
optimal gate voltage which is 1.5V-2.0V as shown in 
Fig.7.  This is due to the increase of channel length to 
suppress a short channel effect when the oxide gets 
thicker. 

3. Cooperation between circuit and 
software: VDD hopping and VTH hopping 
In an active mode, changing VDD and VTH in time in 
accordance with required performance at every moment 
is effective for power reduction.  If VDD is lowered or 
VTH is increased, the power decreases but speed is 
degraded.  The difficulty is to find the timing to lower 
the speed.  Hardware cannot know the timing when 
decreasing the performance of a processor does not 
affect the system performance. Only software knows 
when it is possible to decrease the processor 
performance without sacrificing the system 
performance. Software should tell hardware when 
higher performance is needed. 

The circuit side provides a processor whose operating 
frequency and VDD can be varied by software. The 
software side controls the frequency and VDD 
adaptively so that the frequency is lowered to a half 
when high-speed operation is not needed (see Fig.9).  
The scheme has been applied to a MPEG4 codec 
system and the processor power has been reduced to 
one fourth of the conventional fixed VDD processor [5, 
6] (see Fig.11-15).  The video codec system guarantees 
real-time operation for any data input but the highest 
performance is needed only for 6% of time (see Fig.14). 

The algorithm to adaptively change VDD depending on 
the workload is of importance. Since the workload 
depends strongly on data, the control should be 
dynamic in run-time, and should not be static in a 
compile-time. It is too late to notice that the past task is 
an easy task which can be done by using the lower 
voltage because once the task is completed by using the 
high voltage, energy has been already consumed. On 
the other hand, it is impossible to predict the workload 
of the task to be done in the future without error. To 
solve this problem, the algorithm introduces an 
application slicing and a software feedback loop. By 
chopping an application into slices, executing the first 
slices at the maximum frequency, and checking the 
current time and the time margin to execute the next 
slice, the optimum clock frequency and VDD adaptively 
selected by a software feedback loop. (see Fig.10) 

It is to be noted that VDD hopping algorithm works fine 
for every multimedia application we tried although the 
switching time between voltage levels requires 0.2ms 
which is considered to be extraordinary long in terms of 
processor clock period.  In a multimedia application, 
however, the real-time feature is for humans and human 
is slow.  This is the reason why the VDD hopping works 
fine in spite of the long transition time between voltage 
levels.  The other point of interest is that the number of 
voltage levels can be as low as two as is shown in 
Fig.11. 

The VDD hopping scheme can also be applied to multi-
tasking real-time operating system [7] (see Fig.16).  
Since OS knows higher-level information on available 
time slot assignable to an application, higher efficiency 
can be realized than application-only case as shown in 
Fig.16. One example we tried is modified power-
conscious µ-ITRON OS running FFT and MPEG4 at 
the same time and the observed power reduction was 
75% while the power saving for FFT alone was only 
50%. 

When subthreshold leakage becomes dominant in the 
future, the same software control mechanism can be 
used in VTH hopping scheme where VTH is changed in 
time in accordance with the required performance [8] 
(see Fig.17-19).  About 80% power reduction is 
possible for a multimedia real-time application.  It is 
found that time-domain assignment of VTH is more 
effective than spatial assignment of VTH for multimedia 
video application as shown in Fig.20. 



4. Cooperation between VLSI and 
assembly: Superconnect 

In deep submicron designs, RC delay of interconnect 
hinders a high-speed operation of VLSI's.  A widely 
used remedy for the interconnect RC delay is a buffer 
insertion technique.  The basic optimization theory is 
summarized in Fig.21.  The drawback of the buffer 
insertion, however, is that the delay optimization by 
buffer insertion increases power consumption by 73% 
as shown in Fig.22.  With the use of thicker layer of 
metals provided by superconnect [9,10], it is possible to 
decrease interconnect delay without increasing power 
consumption because buffer insertion is not needed 
with low resistance interconnects.  Co-design between 
an LSI itself and an assembly structure such as an 
interposer and a package will be needed.  High current 
expected in low-VDD regime shown in Fig.1 can also be 
mitigated by the use of the thicker metal layer in an 
assembly body and small area pads on an LSI. 

5. Summary 
Power consumption of LSI’s tend to increase due 

to the scaling law and due to the leakage increase 
including sub-threshold, gate tunneling, and 
junction leakage. 

New trend for low-power LSI’s is to pursue 
cooperative approaches among levels: BGMOS to 
cut-off standby leakage, VDD / VTH hopping to 
reduce operating power, and super-connect to 
reduce I/O power are some of the examples. 

One of the biggest barriers to the scaling is the 
leakage power increase and solutions are yet to be 
discovered, though several good trials have been 
made. 

In deep submicron designs, RC delay of 
interconnect  
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Fig.1 VDD, Power and Current Trend 
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Fig.2 Power & Delay Dependence on VDD & VTH 
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Fig.3 Controlling VDD and VTH for low power 
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Fig.4 Previous circuit schemes 
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Fig.6 Boosted gate MOS scheme 
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Fig.7 Power  switch optimization 
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Fig.8 GSI’s in deep-submicron era 
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Fig.9 If you don’t need to hussle, 

VDD should be as low as possible 
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Fig.10  Application slicing and software feedback loop 

in VDD hopping 
 



MPEG-4 video encoding

Transition Delay TTD (ms)
0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

RVH: 2 levels (f,f/2)
RVH : 3 levels (f,f/2,f/3)
RVH : 4 levels (f,f/2,f/3,f/4)
RVH : infinite levels
post-simulation analysis

SH-4

Clock

VDD
SH-4 Modified

Clock

VDD

 
Fig.11  Run-time VDD hopping 

reduces power to less than 1/10 
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Fig.12  Block diagram 
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Fig.13  Measured voltage waveforms 
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Fig.14  Measured power characteristics 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

RPC: 2 levels (f,f/2)
RPC: 3 levels (f,f/2,f/3)
RPC: 4 levels (f,f/2,f/3,f/4)
RPC: infinite levels
post-simulation analysis

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

RPC: 2 levels (f,f/2)
RPC: 3 levels (f,f/2,f/3)
RPC: 4 levels (f,f/2,f/3,f/4)
RPC: infinite levels
post-simulation analysis

MPEG-2 video decoding VSELP speech encoding

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X
N

or
m

al
iz

ed
 P

ow
er

 P
/P

FI
X

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X
N

or
m

al
iz

ed
 P

ow
er

 P
/P

FI
X

Transition Delay T TD(ms)Transition Delay T TD(ms)Transition Delay T TD(ms)  
Fig.15  Simulation results 
 

0 10 3020 40 50 60

Proposed scheduling: cooperation of OS and applications (power consumption=0.24)

0 10 3020 40 50 60

Speed control within application slices (power consumption=0.47)

0 10 3020 40 50 60

Conventional rate-monotonic scheduling (power consumption=1)

0 10 3020 40 50 60

Speed control with power-conscious OS (power consumption=0.85)

 
Fig.16  Power Conscious OS & Application Slicing 
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Fig.17 VTH-hopping 
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Fig.18  Schematic of VTH-hopping 
 



0.6µµµµm process

Overhead of VTH-hopping
= 14%

RISC core 
= 2.1mm x 2.0mm

VBS selector 
= 0.2mm x 0.6mm  

Fig.19  Microphotograph of RISC processor 
 

Fixed VTH
Fixed freq.

Dual VTH
0

0.5

1

Leakage power
Dynamic power

VDD=0.5V
VTHlow=0V
94% f/2 operation

N
or

m
al

iz
ed

 p
ow

er

VTH-hopping VTH-hopping
+ Dual VTH  

Fig.20  Power comparison 
 

a) Without buffers b) With buffers

RINTCINT

( )
INTINTOPTOPT

MOSINTINTINTOPT

INTINT
OPT

INT

INT
OPT

INTINTINTINT

TINTINTTTTINTINT

CCppChkgatesofCap

CRCRpppDelay

stagesofnumberOptimized
CR
CR

p
pk

k
Delay

inverterbufferofsizeOptimized
CR
RCh

h
Delay

BufferedhC
k

R
k

C
h

RhC
h

Rp
k

C
k

RpkDelay

MOSFETminimumofresistanceeffectiveGateR
MOSFETminimumofecapacitancGateC

CRCRCRCRt

73.0/.

4.22

:0

:0

:

:
:

)(693.0377.0

210

00221

002

1

0

0

0
0

0
0

21

0

0

05

===

ττ≈+=

=→=
∂

∂

=→=
∂

∂
















 +++≈

+++≈

RT

CT

 
Fig.21  Buffer insertion 
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Fig.22  Power delay optimization 
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Fig.23  RC delay of global interconnections 
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Fig.24  3D Integration 
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Fig.26  Superconnect 
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Fig.27  Superconnect technology 


